The paramodular Hecke algebra

被引:0
|
作者
Johnson-Leung, Jennifer [1 ]
Parker, Joshua [2 ]
Roberts, Brooks [1 ]
机构
[1] Univ Idaho, Dept Math & Stat Sci, 875 Perimeter Dr,MS 1103, Moscow, ID 83843 USA
[2] Elmira Coll, Div Math & Nat Sci, One Pk Pl, Elmira, NY 14901 USA
关键词
Hecke algebra; Paramodular; Euler factor; Non-commutative graded algebra; SERIES;
D O I
10.1007/s40993-024-00564-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a presentation via generators and relations of the local graded paramodular Hecke algebra of prime level. In particular, we prove that the paramodular Hecke algebra is isomorphic to the quotient of the free Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}$$\end{document}-algebra generated by four non-commuting variables by an ideal generated by seven relations. Using this description, we derive rationality results at the level of characters and give a characterization of the center of the Hecke algebra. Underlying our results are explicit formulas for the product of any generator with any double coset.
引用
收藏
页数:33
相关论文
共 50 条