机构:
Univ Idaho, Dept Math & Stat Sci, 875 Perimeter Dr,MS 1103, Moscow, ID 83843 USAUniv Idaho, Dept Math & Stat Sci, 875 Perimeter Dr,MS 1103, Moscow, ID 83843 USA
Johnson-Leung, Jennifer
[1
]
Parker, Joshua
论文数: 0引用数: 0
h-index: 0
机构:
Elmira Coll, Div Math & Nat Sci, One Pk Pl, Elmira, NY 14901 USAUniv Idaho, Dept Math & Stat Sci, 875 Perimeter Dr,MS 1103, Moscow, ID 83843 USA
Parker, Joshua
[2
]
Roberts, Brooks
论文数: 0引用数: 0
h-index: 0
机构:
Univ Idaho, Dept Math & Stat Sci, 875 Perimeter Dr,MS 1103, Moscow, ID 83843 USAUniv Idaho, Dept Math & Stat Sci, 875 Perimeter Dr,MS 1103, Moscow, ID 83843 USA
Roberts, Brooks
[1
]
机构:
[1] Univ Idaho, Dept Math & Stat Sci, 875 Perimeter Dr,MS 1103, Moscow, ID 83843 USA
[2] Elmira Coll, Div Math & Nat Sci, One Pk Pl, Elmira, NY 14901 USA
We give a presentation via generators and relations of the local graded paramodular Hecke algebra of prime level. In particular, we prove that the paramodular Hecke algebra is isomorphic to the quotient of the free Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}$$\end{document}-algebra generated by four non-commuting variables by an ideal generated by seven relations. Using this description, we derive rationality results at the level of characters and give a characterization of the center of the Hecke algebra. Underlying our results are explicit formulas for the product of any generator with any double coset.