Kleinian Singularities: Some Geometry, Combinatorics and Representation Theory

被引:0
|
作者
Lukas Bertsch [1 ]
Ádám Gyenge [2 ]
Balázs Szendrői [1 ]
机构
[1] University of Vienna,Faculty of Mathematics
[2] Budapest University of Technology and Economics,Department of Algebra and Geometry
关键词
D O I
10.1365/s13291-024-00291-5
中图分类号
学科分类号
摘要
We review the relationship between discrete groups of symmetries of Euclidean three-space, constructions in algebraic geometry around Kleinian singularities including versions of Hilbert and Quot schemes, and their relationship to finite-dimensional and affine Lie algebras via the McKay correspondence. We focus on combinatorial aspects, such as the enumeration of certain types of partition-like objects, reviewing in particular a recently developed root-of-unity-substitution calculus. While the most complete results are in type A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A$\end{document}, we also develop aspects of the theory in type D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D$\end{document}, and end with some questions about the exceptional type E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E$\end{document} cases.
引用
收藏
页码:213 / 247
页数:34
相关论文
共 50 条