Gauge/Liouville Triality

被引:0
|
作者
Aganagic, Mina [1 ,2 ]
Haouzi, Nathan [1 ,3 ]
Kozcaz, Can [4 ,5 ,6 ]
Shakirov, Shamil [1 ,7 ,8 ]
机构
[1] Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA USA
[3] Inst Adv Study, Sch Nat Sci, Einstein Dr, Princeton, NJ 08540 USA
[4] Bogazici Univ, Dept Phys, Istanbul, Turkiye
[5] Int Sch Adv Studies SISSA, Trieste, Italy
[6] Inst Nazl Fizika Nucl, Trieste, Italy
[7] Beijing Inst Math Sci & Applicat BIMSA, Beijing 101408, Peoples R China
[8] Inst Theoret & Expt Phys, Moscow, Russia
基金
美国国家科学基金会;
关键词
VIRASORO ALGEBRA; DUALITY;
D O I
10.1007/s00220-024-05163-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Conformal blocks of the Virasoro algebra have a Coulomb-gas representation as Dotsenko-Fateev integrals over the positions of screening charges. In q-deformed Virasoro, the conformal blocks on a sphere with an arbitrary number of punctures are manifestly the same, when written in Dotsenko-Fateev representation, as the partition functions of a class of 3d U(N) gauge theories with N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {N}}}=2$$\end{document} supersymmetry, in the Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}-background. Coupling the 3d gauge theory to a flavor in fundamental representation corresponds to inserting a Virasoro vertex operator; the two real mass parameters determine the momentum and position of the puncture. The Dotsenko-Fateev integrals can be computed by residues. The result is the instanton sum of a five dimensional N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {N}}}=1$$\end{document} gauge theory. The positions of the poles are labeled by tuples of partitions, the residues of the integrand are the Nekrasov summands.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Gauge Theories on ALE Space and Super Liouville Correlation Functions
    Bonelli, Giulio
    Maruyoshi, Kazunobu
    Tanzini, Alessandro
    LETTERS IN MATHEMATICAL PHYSICS, 2012, 101 (01) : 103 - 124
  • [22] ON COMPOSITIONS AND TRIALITY
    KNUS, MA
    PARIMALA, R
    SRIDHARAN, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1994, 457 : 45 - 70
  • [23] GROUPS WITH TRIALITY
    Grishkov, Alexander N.
    Zavarnitsine, Andrei V.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2006, 5 (04) : 441 - 463
  • [24] Charged dilaton black hole with multiple Liouville potentials and gauge fields
    Yen-Kheng Lim
    Journal of High Energy Physics, 2020
  • [25] Liouville Correlation Functions from Four-Dimensional Gauge Theories
    Luis F. Alday
    Davide Gaiotto
    Yuji Tachikawa
    Letters in Mathematical Physics, 2010, 91 : 167 - 197
  • [26] Soliton solutions, Liouville integrability and gauge equivalence of Sasa Satsuma equation
    Ghosh, S
    Kundu, A
    Nandy, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (04) : 1993 - 2000
  • [27] Special metrics and triality
    Witt, Frederik
    ADVANCES IN MATHEMATICS, 2008, 219 (06) : 1972 - 2005
  • [28] On two triality results
    Constantin Zălinescu
    Optimization and Engineering, 2011, 12 : 477 - 487
  • [29] Liouville Correlation Functions from Four-Dimensional Gauge Theories
    Alday, Luis F.
    Gaiotto, Davide
    Tachikawa, Yuji
    LETTERS IN MATHEMATICAL PHYSICS, 2010, 91 (02) : 167 - 197
  • [30] Charged dilaton black hole with multiple Liouville potentials and gauge fields
    Lim, Yen-Kheng
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (03)