Gauge/Liouville Triality

被引:0
|
作者
Aganagic, Mina [1 ,2 ]
Haouzi, Nathan [1 ,3 ]
Kozcaz, Can [4 ,5 ,6 ]
Shakirov, Shamil [1 ,7 ,8 ]
机构
[1] Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA USA
[3] Inst Adv Study, Sch Nat Sci, Einstein Dr, Princeton, NJ 08540 USA
[4] Bogazici Univ, Dept Phys, Istanbul, Turkiye
[5] Int Sch Adv Studies SISSA, Trieste, Italy
[6] Inst Nazl Fizika Nucl, Trieste, Italy
[7] Beijing Inst Math Sci & Applicat BIMSA, Beijing 101408, Peoples R China
[8] Inst Theoret & Expt Phys, Moscow, Russia
基金
美国国家科学基金会;
关键词
VIRASORO ALGEBRA; DUALITY;
D O I
10.1007/s00220-024-05163-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Conformal blocks of the Virasoro algebra have a Coulomb-gas representation as Dotsenko-Fateev integrals over the positions of screening charges. In q-deformed Virasoro, the conformal blocks on a sphere with an arbitrary number of punctures are manifestly the same, when written in Dotsenko-Fateev representation, as the partition functions of a class of 3d U(N) gauge theories with N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {N}}}=2$$\end{document} supersymmetry, in the Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}-background. Coupling the 3d gauge theory to a flavor in fundamental representation corresponds to inserting a Virasoro vertex operator; the two real mass parameters determine the momentum and position of the puncture. The Dotsenko-Fateev integrals can be computed by residues. The result is the instanton sum of a five dimensional N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {N}}}=1$$\end{document} gauge theory. The positions of the poles are labeled by tuples of partitions, the residues of the integrand are the Nekrasov summands.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] FZZ-triality and large N=4 super Liouville theory
    Creutzig, Thomas
    Hikida, Yasuaki
    NUCLEAR PHYSICS B, 2022, 977
  • [2] Minimal gauge origin of baryon triality and flavorful signatures at the LHC
    Lee, Hye-Sung
    PHYSICS LETTERS B, 2011, 704 (04) : 316 - 321
  • [3] Beyond triality: dual quiver gauge theories and little string theories
    Brice Bastian
    Stefan Hohenegger
    Amer Iqbal
    Soo-Jong Rey
    Journal of High Energy Physics, 2018
  • [4] Beyond triality: dual quiver gauge theories and little string theories
    Bastian, Brice
    Hohenegger, Stefan
    Iqbal, Amer
    Rey, Soo-Jong
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11):
  • [5] CONFORMAL GAUGE GENERATORS IN LIOUVILLE THEORY
    BLAGOJEVIC, M
    VASILIC, M
    VUKASINAC, T
    CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (09) : 2143 - 2153
  • [6] Liouville mode in gauge/gravity duality
    Tatiana Moskalets
    Alexei Nurmagambetov
    The European Physical Journal C, 2015, 75
  • [7] Liouville mode in gauge/gravity duality
    Moskalets, Tatiana
    Nurmagambetov, Alexei
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (11): : 1 - 15
  • [8] Triality and dual equivalence between Dirac field and topologically massive gauge field
    Liu Yu-Fen
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 46 (03) : 481 - 492
  • [9] Triality and Dual Equivalence Between Dirac Field and Topologically Massive Gauge Field
    LIU Yu-Fen~* Institute of Theoretical Physics
    CommunicationsinTheoreticalPhysics, 2006, 46 (09) : 481 - 492
  • [10] Gauge theory loop operators and Liouville theory
    Nadav Drukker
    Jaume Gomis
    Takuya Okuda
    Jörg Teschner
    Journal of High Energy Physics, 2010