Gauge symmetries for the classification of the physical states

被引:0
|
作者
Strocchi, F. [1 ]
机构
[1] Univ Pisa, Dipartimento Fis, Pisa, Italy
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 11期
关键词
D O I
10.1140/epjp/s13360-024-05750-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This note focuses the problem of motivating the use of gauge symmetries (being the identity on the observables) from general principles, beyond their practical success, starting from global gauge symmetries and then by emphasizing the substantially different role of local gauge symmetries. In the latter case, a deterministic time evolution of the local field algebra, necessary for field quantization, requires a reduction of the full local gauge group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {G}}}$$\end{document} to a residual local subgroup Gr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {G}}}_r$$\end{document} satisfying suitable conditions. A non-trivial residual local gauge group allows for the use of a local field algebra, otherwise precluded if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {G}}}$$\end{document} is reduced to the identity. Moreover, in the non-abelian case a residual Gr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {G}}}_r$$\end{document} allows to exploit its topology, which provides the (gauge invariant) topological invariants which classify the vacuum structure with important physical effects. Furthermore, it provides a general mechanism of spontaneous symmetry breaking without Goldstone bosons.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Classification of atomic states by geometrical and quantum-mechanical symmetries
    Poulsen, MD
    Madsen, LB
    PHYSICAL REVIEW A, 2005, 72 (04):
  • [32] Classification of matrix product states with a local (gauge) symmetry
    Kull, Ilya
    Molnar, Andras
    Zohar, Erez
    Cirac, J. Ignacio
    ANNALS OF PHYSICS, 2017, 386 : 199 - 241
  • [33] Gauge symmetries on θ-deformed spaces
    Banerjee, Rabin
    Samanta, Saurav
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02):
  • [34] SINGLETS OF FERMIONIC GAUGE SYMMETRIES
    BERGSHOEFF, EA
    KALLOSH, RE
    RAHMANOV, MA
    PHYSICS LETTERS B, 1989, 223 (3-4) : 391 - 398
  • [35] GLOBAL SYMMETRIES OF THE LANDAU GAUGE
    SPIRIDONOV, VP
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1988, 47 (06): : 1124 - 1126
  • [36] Comparing dualities and gauge symmetries
    De Haro, Sebastian
    Teh, Nicholas
    Butterfield, Jeremy N.
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2017, 59 : 68 - 80
  • [37] GAUGE SYMMETRIES IN 3 DIMENSIONS
    GONERA, C
    KOSINSKI, P
    PHYSICS LETTERS B, 1991, 268 (01) : 81 - 85
  • [38] Gauge Transformations as Spacetime Symmetries
    Angeles, Rene
    Napsuciale, Mauro
    PARTICLES AND FIELDS, 2009, 1116 : 399 - 401
  • [39] Gauge symmetries and structure of proteins
    Molochkov, Alexander
    Begun, Alexander
    Niemi, Antti
    XIITH QUARK CONFINEMENT AND THE HADRON SPECTRUM, 2017, 137
  • [40] Gauge Symmetries and Dirac Conjecture
    Wang, Yong-Long
    Li, Zi-Ping
    Wang, Ke
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (07) : 1894 - 1904