Gauge symmetries for the classification of the physical states

被引:0
|
作者
Strocchi, F. [1 ]
机构
[1] Univ Pisa, Dipartimento Fis, Pisa, Italy
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 11期
关键词
D O I
10.1140/epjp/s13360-024-05750-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This note focuses the problem of motivating the use of gauge symmetries (being the identity on the observables) from general principles, beyond their practical success, starting from global gauge symmetries and then by emphasizing the substantially different role of local gauge symmetries. In the latter case, a deterministic time evolution of the local field algebra, necessary for field quantization, requires a reduction of the full local gauge group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {G}}}$$\end{document} to a residual local subgroup Gr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {G}}}_r$$\end{document} satisfying suitable conditions. A non-trivial residual local gauge group allows for the use of a local field algebra, otherwise precluded if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {G}}}$$\end{document} is reduced to the identity. Moreover, in the non-abelian case a residual Gr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {G}}}_r$$\end{document} allows to exploit its topology, which provides the (gauge invariant) topological invariants which classify the vacuum structure with important physical effects. Furthermore, it provides a general mechanism of spontaneous symmetry breaking without Goldstone bosons.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] From physical symmetries to emergent gauge symmetries
    Carlos Barceló
    Raúl Carballo-Rubio
    Francesco Di Filippo
    Luis J. Garay
    Journal of High Energy Physics, 2016
  • [2] From physical symmetries to emergent gauge symmetries
    Barcelo, Carlos
    Carballo-Rubio, Raul
    Di Filippo, Francesco
    Garay, Luis J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10):
  • [3] Gauge fixing and physical symmetries
    van Egmond, Duifje Maria
    Reinosa, Urko
    PHYSICAL REVIEW D, 2023, 108 (05)
  • [4] Physical symmetries and gauge choices in the Landau problem
    Masashi Wakamatsu
    Akihisa Hayashi
    The European Physical Journal A, 58
  • [5] Symmetries and physical functions in general gauge theory
    Gitman, DM
    Tyutin, IV
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (02): : 327 - 360
  • [6] Physical symmetries and gauge choices in the Landau problem
    Wakamatsu, Masashi
    Hayashi, Akihisa
    EUROPEAN PHYSICAL JOURNAL A, 2022, 58 (07):
  • [7] Large gauge symmetries and asymptotic states in QED
    Barak Gabai
    Amit Sever
    Journal of High Energy Physics, 2016
  • [8] Large gauge symmetries and asymptotic states in QED
    Gabai, Barak
    Sever, Amit
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (12):
  • [9] Symmetries and the Identity of Physical States
    Friederich, Simon
    EPSA15 SELECTED PAPERS, 2017, 5 : 153 - 165
  • [10] PHYSICAL STATES AND STRING SYMMETRIES
    WEST, P
    MODERN PHYSICS LETTERS A, 1995, 10 (09) : 761 - 771