Hot spot temperature estimation in mineral oil immersed power transformers using support vectors regression

被引:0
|
作者
Cerón A.F. [1 ]
Lozano R.A. [1 ]
Aponte G. [1 ]
Romero A.A. [2 ]
机构
[1] Grupo de Investigación en Alta Tensión, GRALTA., Universidad del Valle, Ciudad Universitaria Meléndez, Calle 13 N° 100-00, Cali
[2] Instituto de Energía Eléctrica, IEE-UNSJ-CONICET., CONICET, Universidad Nacional de San Juan, Av. Lib. San Martín 1109 (Oeste), San Juan
来源
Informacion Tecnologica | 2020年 / 31卷 / 04期
关键词
Hot spot temperature; Power transformer; Support vector regression; Thermoelectric model;
D O I
10.4067/S0718-07642020000400035
中图分类号
学科分类号
摘要
This article presents an innovative methodological development for the hot spot temperature estimation in mineral oil immersed power transformers by using the support vector regression (SVR). The SVR algorithm is based on the statistical learning theory and is part of the machine learning tools. It was used through a six stage implementation where an SVR model capable of estimating the variable under study is obtained. The method was applied to a real 30 MVA transformer with ONAN/ONAF cooling at 70/100 % of load using a database for a 10 year period. The developed SVR model was validated by comparison to the results obtained with the Dejan Susa model using statistical performance metrics. In conclusion, the results obtained indicate that the implemented SVR model allows estimating the hot spot temperature with high accuracy. © 2020 Centro de Informacion Tecnologica. All rights reserved.
引用
收藏
页码:35 / 44
页数:9
相关论文
共 50 条
  • [41] Load Transfer Optimization Considering Hot-Spot and Top-Oil Temperature Limits of Transformers
    Lei, Chao
    Bu, Siqi
    Wang, Qianggang
    Zhou, Niancheng
    Yang, Longjie
    Xiong, Xiaofu
    IEEE TRANSACTIONS ON POWER DELIVERY, 2022, 37 (03) : 2194 - 2208
  • [42] Research on temperature distribution characteristics of oil-immersed power transformers based on fluid network decoupling
    Xu, Yongming
    Xu, Ziyi
    Ren, Congrui
    Wang, Yaodong
    HIGH VOLTAGE, 2024, 9 (05): : 1136 - 1148
  • [43] Fault Diagnosis of Oil-Immersed Power Transformers Using SVM and Logarithmic Arctangent Transform
    Hu, Qin
    Mo, Jiaqing
    Ruan, Saisai
    Zhang, Xin
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (11) : 1562 - 1569
  • [44] HOT-SPOT TEMPERATURE AND TEMPERATURE DECAY RATE MEASUREMENT IN THE OIL IMMERSED POWER TRANSFORMER THROUGH FBG BASED QUASI-DISTRIBUTED SENSING SYSTEM
    Deng, Jian-Gang
    Nie, De-Xin
    Pi, Ben-Xi
    Xia, Li
    Wei, Li
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2017, 59 (02) : 472 - 475
  • [45] Hot Spot Temperature for 154 kV Transformer Filled with Mineral Oil and Natural Ester Fluid
    Kweon, Dongjin
    Koo, Kyosun
    Woo, Jungwook
    Kim, Yungsig
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2012, 19 (03) : 1013 - 1020
  • [46] A new apparatus for mitigating the hot spot problem in large power transformers using Ants algorithm
    Takami, Kourosh Mousavi
    Mahmoudi, Jafar
    2007 IEEE POWER ENGINEERING SOCIETY CONFERENCE AND EXPOSITION IN AFRICA, VOLS 1 AND 2, 2007, : 587 - 594
  • [47] Using Power State Estimation to Calculate Hotspot Temperature of Distribution Transformers
    Marks, J.
    Krause, O.
    Martin, D.
    McPhail, D.
    2015 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2015,
  • [48] Fault diagnosis of oil-immersed power transformers using kernel based extreme learning machine
    Zhang, Liwei
    Metallurgical and Mining Industry, 2015, 7 (07): : 213 - 218
  • [49] A novel artificial neural network approach for residual life estimation of paper insulation in oil-immersed power transformers
    Nezami, Md. Manzar
    Equbal, Md. Danish
    Ansari, Md. Fahim
    Alotaibi, Majed A.
    Malik, Hasmat
    Marquez, Fausto Pedro Garcia
    Hossaini, Mohammad Asef
    IET ELECTRIC POWER APPLICATIONS, 2024, 18 (04) : 477 - 488
  • [50] RESEARCH ON TEMPERATURE RISE CALCULATION AND HOT SPOT TEMPERATURE INVERSION METHOD FOR OIL IMMERSED TRANSFORMER BASED ON MAGNETIC-THERMAL-FLUID
    Yuan, Fating
    Zhang, Naiyue
    Shi, Wenyu
    Gu, Lingyun
    Zeng, Jihao
    Tang, Bo
    THERMAL SCIENCE, 2024, 28 (4B): : 3307 - 3323