Innovative structural and optical insights into synthesized BaTi(1-2x)SbxCrx(PO4)2 (0 ≤ x ≤ 0.5) yavapaiite phases

被引:0
|
作者
Ghandi, Youssef [1 ]
Fakhreddine, Rachid [2 ]
Moukhfi, Chaimaa [1 ]
El Bali, Brahim [3 ]
Tridane, Malika [1 ,4 ]
Ouasri, Ali [1 ,5 ]
Zerraf, Soufiane [1 ]
Zeroual, Abdellah [6 ]
Belaaouad, Said [1 ]
机构
[1] Hassan II Univ, Fac Sci Ben MSik, Phys Chem Lab Mat LCPM, Casablanca, Morocco
[2] Hassan II Univ Casablanca, Fac Sci Ain Chock, Lab Genie Mat Environm Valorisat GeMEV, Casablanca, Morocco
[3] Univ Sidi Mohamed Ben Abdellah, Fac Sci, Engn Lab Organometall Mol Mat & Environm LIMOME, Fes, Morocco
[4] Reg Ctr Educ & Training Trades, Casablanca, Morocco
[5] Ctr Reg Metiers Educ Format, ReSIP Lab, BP 6210, Rabat, Morocco
[6] Chouaib Doukkali Univ, Fac Sci, Mol Modelling & Spect Res Team, POB 20, El Jadida 24000, Morocco
关键词
Yavapaiite; X-ray diffraction; UV-visible; Band gap; Hirshfeld surface; CRYSTAL-STRUCTURE; HIRSHFELD; DSC;
D O I
10.1016/j.jssc.2025.125305
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A series of yavapaiite-type phosphates BaTi(1-2x)SbxCrx(PO4)2 (0 <= x <= 0.5), was synthesized via solid-state reactions across divers fractions x, and studied by X-ray diffraction, Infrared, Raman UV-visible, and color (CIEL*a*b*) analyses. These compounds crystallize too in the monoclinic space group C2/m (Z = 2), with yavapaiite structure type and comparable units' cell parameters. The structure type consists of layers, arranged parallel to (a, b) plane, and formed by corner-connected Ti(Sb/Cr)O6 octahedra and PO43- tetrahedra groups. Rietveld refinements showed that the substitution of Ti4+ by Sb5+ and Cr3+ cations did not change the yavapaiite crystal structure symmetry, lattice parameters, bond lengths, and angles in studied (0 <= x <= 0.5) compositions. Specifically, the parameters increase very slightly as x increased from 0 to 0.5 without changing the yavapaiite structure-type. The SEM-EDX high-resolution images showed the formation of divers agglomerated particles with grain boundary and different sizes, and confirmed the presence of expected elements for all studied compositions (0 <= x <= 0.5). Hirshfeld surface and Fringplots analyses made on BaTi(PO4)2 crystal structure (x = 0), highlited that Ba center dot center dot center dot O/O center dot center dot center dot Ba (39.5 %) and O center dot center dot center dot O (32.1 %) are the important intercontacts contributors in the BaTi(PO4)2 crystal packing. Infrared and Raman spectra recorded at room temperature revealed characteristic bands of the PO43- tetrahedra groups, with slight changes in frequencies positions and intensities with varying the x fractions. The UV-visible absorption spectra showed the effect of Sb/Cr substitution on the optical band gap. Direct band gap values are estimated at 3.62 eV for (x = 0) and around 2.64 eV for (x = 0.1-0.5), indicating a semiconducting behavior of the substituted materials in the studied composition range. The partial substitution of Ti4+ with Sb5+/Cr3+ affects the optical properties of BaTi(1-2x)SbxCrx(PO4)2 (0 <= x <= 0.5) in the way that modifying the Sb/Cr content can remarkably reduce the optical band gap.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Optical properties and laser performance of neodymium doped fluoroapatites SrxCa5-x(PO4)(3)F (x=0, 1, 2, 3, 4, and 5)
    Faure, N
    Borel, C
    Templier, R
    Couchaud, M
    Calvat, C
    Wyon, C
    OPTICAL MATERIALS, 1996, 6 (04) : 293 - 303
  • [32] Structure and electrochemical study of Li2xMn(1-@x)TiCr(PO4)3 (x = 0 -@ 0.50)
    Aatiq, A.
    Delmas, C.
    El Jazouli, A.
    Gravereau, P.
    Annales de Chimie: Science des Materiaux, 23 (1-2):
  • [33] Synthesis, Spectroscopic and Magnetic Properties of the Co2(OH)(PO4)1-x-(AsO4)x [0 ≤ x ≤ 1] Solid Solution
    de Pedro, Imanol
    Maria Rojo, Jose
    Rodriguez Fernandez, Jesus
    Lezama, Luis
    Rojo, Teofilo
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2010, (17) : 2514 - 2522
  • [34] Phosphates M0.5(1+x)2+ CrxTi2-x(PO4)3:: Synthesis, structure, and catalytic properties
    Pet'kov, V. I.
    Shchelokov, I. A.
    Kurazhkovskaya, V. S.
    Orekhova, N. V.
    Ermilova, M. M.
    Tereshchenko, G. F.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2008, 53 (07) : 993 - 999
  • [35] Distribution and mobility of lithium in NASICON-type Li1-xTi2-xNbx(PO4)3 (0 ≤ x ≤ 0.5) compounds
    Kahlaoui, Radhouene
    Arbi, Kamel
    Jimenez, Ricardo
    Sobrados, Isabel
    Sanz, Jesus
    Ternane, Riadh
    MATERIALS RESEARCH BULLETIN, 2018, 101 : 146 - 154
  • [36] PREPARATION, STRUCTURAL CHARACTERIZATION AND CONDUCTIVITY OF LITIXZR2-X(PO4)3
    CASCIOLA, M
    COSTANTINO, U
    ANDERSEN, IGK
    ANDERSEN, EK
    SOLID STATE IONICS, 1990, 37 (04) : 281 - 287
  • [37] Preparation and characterization of Ba-substituted Li1+xAlxGe2-x (PO4)3 (x=0.5) solid electrolyte
    Kotobuki, Masashi
    Hanc, Emil
    Yan, Binggong
    Molenda, Janina
    Lu, Li
    CERAMICS INTERNATIONAL, 2017, 43 (15) : 12616 - 12622
  • [38] Vibrational spectra and factor group analysis of Li2xMn0.5-xTi2(PO4)3 {x=0, 0.25, 0.50}
    Pikl, R
    de Waal, D
    Aatiq, A
    El Jazouli, A
    MATERIALS RESEARCH BULLETIN, 1998, 33 (06) : 955 - 961
  • [39] STRUCTURE OF SILICOPHOSPHATES CA(3+X)CLASS(1-X)(PO4)2(1-X)(SIO4)2
    LAZORYAK, BI
    GOLUBEV, VN
    AZIEV, RG
    KRISTALLOGRAFIYA, 1988, 33 (05): : 1113 - 1121
  • [40] Influence of the secondary phase LiTiOPO4 on the properties of Li1+xAlxTi2 - x(PO4)3 (x=0; 0.3)
    Hupfer, Thomas
    Bucharsky, E. C.
    Schell, K. G.
    Hoffmann, M. J.
    SOLID STATE IONICS, 2017, 302 : 49 - 53