Longitudinal deep neural networks for assessing metastatic brain cancer on a large open benchmark

被引:1
|
作者
Link, Katherine E. [1 ,2 ]
Schnurman, Zane [1 ]
Liu, Chris [1 ,3 ]
Kwon, Young Joon [4 ]
Jiang, Lavender Yao [1 ,5 ]
Nasir-Moin, Mustafa [6 ]
Neifert, Sean [1 ]
Alzate, Juan Diego [1 ]
Bernstein, Kenneth [1 ]
Qu, Tanxia [7 ]
Chen, Viola [8 ]
Yang, Eunice [9 ]
Golfinos, John G. [1 ]
Orringer, Daniel [1 ]
Kondziolka, Douglas [1 ]
Oermann, Eric Karl [1 ,4 ,5 ]
机构
[1] NYU Langone Hlth, Dept Neurosurg, New York, NY 10016 USA
[2] NVIDIA, Santa Clara, CA USA
[3] NYU Tandon Sch Engn, Elect & Comp Engn, New York, NY USA
[4] NYU Langone Hlth, Dept Radiol, New York, NY 10016 USA
[5] NYU, Ctr Data Sci, New York, NY 10012 USA
[6] Harvard Med Sch, Boston, MA USA
[7] NYU Langone Hlth, Dept Radiat Oncol, New York, NY USA
[8] Eikon Therapeut, New York, NY USA
[9] Columbia Univ, Vagelos Coll Surg & Phys, New York, NY USA
关键词
TUMOR-SIZE; EVOLUTION; SURVIVAL;
D O I
10.1038/s41467-024-52414-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The detection and tracking of metastatic cancer over the lifetime of a patient remains a major challenge in clinical trials and real-world care. Advances in deep learning combined with massive datasets may enable the development of tools that can address this challenge. We present NYUMets-Brain, the world's largest, longitudinal, real-world dataset of cancer consisting of the imaging, clinical follow-up, and medical management of 1,429 patients. Using this dataset we developed Segmentation-Through-Time, a deep neural network which explicitly utilizes the longitudinal structure of the data and obtained state-of-the-art results at small (<10 mm3) metastases detection and segmentation. We also demonstrate that the monthly rate of change of brain metastases over time are strongly predictive of overall survival (HR 1.27, 95%CI 1.18-1.38). We are releasing the dataset, codebase, and model weights for other cancer researchers to build upon these results and to serve as a public benchmark.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Brain tumor segmentation with Deep Neural Networks
    Havaei, Mohammad
    Davy, Axel
    Warde-Farley, David
    Biard, Antoine
    Courville, Aaron
    Bengio, Yoshua
    Pal, Chris
    Jodoin, Pierre-Marc
    Larochelle, Hugo
    MEDICAL IMAGE ANALYSIS, 2017, 35 : 18 - 31
  • [22] Role of the Neural Niche in Brain Metastatic Cancer
    Termini, John
    Neman, Josh
    Jandial, Rahul
    CANCER RESEARCH, 2014, 74 (15) : 4011 - 4015
  • [23] Deep Convolutional Neural Network for Brain Tumor and Skin Cancer Detection Over Traditional Neural Networks
    Narayan, T. Ashish
    Anudeep, Ch
    Bodavarapu, Pavan Nageswar Reddy
    Srinivas, P. V. V. S.
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON SUSTAINABLE EXPERT SYSTEMS (ICSES 2021), 2022, 351 : 509 - 523
  • [24] Analysis of Deep Learning Neural Networks for Seismic Impedance Inversion: A Benchmark Study
    Marques, Caique Rodrigues
    dos Santos, Vinicius Guedes
    Lunelli, Rafael
    Roisenberg, Mauro
    Rodrigues, Bruno Barbosa
    ENERGIES, 2022, 15 (20)
  • [25] Theory-training deep neural networks for an alloy solidification benchmark problem
    Rad, M. Torabi
    Viardin, A.
    Schmitz, G. J.
    Apel, M.
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 180
  • [26] IMAGE EXPOSURE ASSESSMENT: A BENCHMARK AND A DEEP CONVOLUTIONAL NEURAL NETWORKS BASED MODEL
    Zhang, Lijun
    Zhang, Lin
    Liu, Xiao
    Shen, Ying
    Wang, Dongqing
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [27] The topology of large Open Connectome networks for the human brain
    Michael T. Gastner
    Géza Ódor
    Scientific Reports, 6
  • [28] The topology of large Open Connectome networks for the human brain
    Gastner, Michael T.
    Odor, Geza
    SCIENTIFIC REPORTS, 2016, 6
  • [29] Evolving the Topology of Large Scale Deep Neural Networks
    Assuncao, Filipe
    Lourenco, Nuno
    Machado, Penousal
    Ribeiro, Bernardete
    GENETIC PROGRAMMING (EUROGP 2018), 2018, 10781 : 19 - 34
  • [30] Large Deep Neural Networks for MS Lesion Segmentation
    Prieto, Juan C.
    Cavallari, Michele
    Palotai, Miklos
    Pinzon, Alfredo Morales
    Egorova, Svetlana
    Styner, Martin
    Guttmann, Charles R. G.
    MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133