Longitudinal deep neural networks for assessing metastatic brain cancer on a large open benchmark

被引:1
|
作者
Link, Katherine E. [1 ,2 ]
Schnurman, Zane [1 ]
Liu, Chris [1 ,3 ]
Kwon, Young Joon [4 ]
Jiang, Lavender Yao [1 ,5 ]
Nasir-Moin, Mustafa [6 ]
Neifert, Sean [1 ]
Alzate, Juan Diego [1 ]
Bernstein, Kenneth [1 ]
Qu, Tanxia [7 ]
Chen, Viola [8 ]
Yang, Eunice [9 ]
Golfinos, John G. [1 ]
Orringer, Daniel [1 ]
Kondziolka, Douglas [1 ]
Oermann, Eric Karl [1 ,4 ,5 ]
机构
[1] NYU Langone Hlth, Dept Neurosurg, New York, NY 10016 USA
[2] NVIDIA, Santa Clara, CA USA
[3] NYU Tandon Sch Engn, Elect & Comp Engn, New York, NY USA
[4] NYU Langone Hlth, Dept Radiol, New York, NY 10016 USA
[5] NYU, Ctr Data Sci, New York, NY 10012 USA
[6] Harvard Med Sch, Boston, MA USA
[7] NYU Langone Hlth, Dept Radiat Oncol, New York, NY USA
[8] Eikon Therapeut, New York, NY USA
[9] Columbia Univ, Vagelos Coll Surg & Phys, New York, NY USA
关键词
TUMOR-SIZE; EVOLUTION; SURVIVAL;
D O I
10.1038/s41467-024-52414-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The detection and tracking of metastatic cancer over the lifetime of a patient remains a major challenge in clinical trials and real-world care. Advances in deep learning combined with massive datasets may enable the development of tools that can address this challenge. We present NYUMets-Brain, the world's largest, longitudinal, real-world dataset of cancer consisting of the imaging, clinical follow-up, and medical management of 1,429 patients. Using this dataset we developed Segmentation-Through-Time, a deep neural network which explicitly utilizes the longitudinal structure of the data and obtained state-of-the-art results at small (<10 mm3) metastases detection and segmentation. We also demonstrate that the monthly rate of change of brain metastases over time are strongly predictive of overall survival (HR 1.27, 95%CI 1.18-1.38). We are releasing the dataset, codebase, and model weights for other cancer researchers to build upon these results and to serve as a public benchmark.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A Benchmark for Interpretability Methods in Deep Neural Networks
    Hooker, Sara
    Erhan, Dumitru
    Kindermans, Pieter-Jan
    Kim, Been
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [2] A unified benchmark for the unknown detection capability of deep neural networks
    Kim, Jihyo
    Koo, Jiin
    Hwang, Sangheum
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 229
  • [3] AI Benchmark: Running Deep Neural Networks on Android Smartphones
    Ignatov, Andrey
    Timofte, Radu
    Chou, William
    Wang, Ke
    Wu, Max
    Hartley, Tim
    Van Gool, Luc
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 288 - 314
  • [4] Network attributes describe a similarity between deep neural networks and large scale brain networks
    Takagi, Kosuke
    JOURNAL OF COMPLEX NETWORKS, 2020, 8 (05)
  • [5] Assessing Deep Neural Networks as Probability Estimators
    Pan, Yu
    Kuo, Kwo-Sen
    Rilee, Michael L.
    Yu, Hongfeng
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 1083 - 1091
  • [6] The Application of Deep Convolutional Neural Networks to Brain Cancer Images: A Survey
    Zadeh Shirazi, Amin
    Fornaciari, Eric
    McDonnell, Mark D.
    Yaghoobi, Mahdi
    Cevallos, Yesenia
    Tello-Oquendo, Luis
    Inca, Deysi
    Gomez, Guillermo A.
    JOURNAL OF PERSONALIZED MEDICINE, 2020, 10 (04): : 1 - 27
  • [7] BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks
    Cui, Hejie
    Dai, Wei
    Zhu, Yanqiao
    Kan, Xuan
    Gu, Antonio Aodong Chen
    Lukemire, Joshua
    Zhan, Liang
    He, Lifang
    Guo, Ying
    Yang, Carl
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (02) : 493 - 506
  • [8] Detection of Metastatic Lymph Nodules in Gastric Cancer Using Deep Convolutional Neural Networks
    Zhang, Zhengdong
    Guo, Yuting
    Lu, Yun
    Li, Shuai
    2019 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2019, : 942 - 947
  • [9] Deep Learning Frameworks for Convolutional Neural Networks-A Benchmark Test
    Pester, Andreas
    Madritsch, Christian
    Klinger, Thomas
    de Guerena, Xabier Lopez
    CYBER-PHYSICAL SYSTEMS AND DIGITAL TWINS, 2020, 80 : 817 - 831
  • [10] Evaluation of the benchmark datasets for testing the efficacy of deep convolutional neural networks
    Dhar, Sanchari
    Shamir, Lior
    VISUAL INFORMATICS, 2021, 5 (03): : 92 - 101