ANALYTICAL SOLUTION OF THE VISCOELASTIC MAXWELL EQUATIONS WITH A CRITICAL POINT IN CYLINDRICAL GEOMETRY

被引:0
|
作者
C. Chittam [1 ]
S.V. Meleshko [1 ]
机构
[1] School of Mathematics,
[2] Institute of Science,undefined
[3] Suranaree University of Technology,undefined
关键词
viscoelastic fluid; Maxwell equations; Johnson-Segalman convected derivative; critical point;
D O I
10.1134/S0021894424050183
中图分类号
学科分类号
摘要
引用
收藏
页码:980 / 984
页数:4
相关论文
共 50 条
  • [1] On exact analytical solutions of equations of Maxwell incompressible viscoelastic medium
    Meleshko, S. V.
    Moshkin, N. P.
    Pukhnachev, V. V.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 105 : 152 - 157
  • [2] TOPOLOGICAL SOLUTION TO THE CYLINDRICAL EINSTEIN-MAXWELL EQUATIONS
    Gogberashvili, Merab
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2009, 18 (11): : 1765 - 1771
  • [3] On steady two-dimensional analytical solutions of the viscoelastic Maxwell equations
    Meleshko, S., V
    Moshkin, N. P.
    Pukhnachev, V. V.
    Samatova, V
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2019, 270 : 1 - 7
  • [4] Heat transfer analysis of viscoelastic fluid flow with fractional Maxwell model in the cylindrical geometry
    Razzaq, Aneela
    Seadawy, Aly R
    Raza, Nauman
    Physica Scripta, 2020, 95 (11):
  • [5] Heat transfer analysis of viscoelastic fluid flow with fractional Maxwell model in the cylindrical geometry
    Razzaq, Aneela
    Seadawy, Aly R.
    Raza, Nauman
    PHYSICA SCRIPTA, 2020, 95 (11)
  • [6] Hidden Boundary Shape Derivative for the Solution to Maxwell Equations and Non Cylindrical Wave Equations
    Zolesio, Jean-Paul
    OPTIMAL CONTROL OF COUPLED SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS, 2009, 158 : 319 - 345
  • [7] Numerical solution of the Vlasov-Maxwell system of equations for cylindrical plasmas
    Hoyos, Jaime H.
    Ramirez, Sebastian
    Valencia, Jose A.
    6TH NATIONAL CONFERENCE ON ENGINEERING PHYSICS AND THE 1ST INTERNATIONAL CONFERENCE ON APPLIED PHYSICS ENGINEERING & INNOVATION, 2019, 1247
  • [8] SOLUTION OF EINSTEIN-MAXWELL EQUATIONS FOR A STATIONARY CYLINDRICAL ELECTRIC CURRENT
    SANTOS, E
    ANALES DE FISICA, 1968, 64 (9-10): : 283 - &
  • [9] Maxwell equations and the optical geometry
    Sonego, S
    Abramowicz, MA
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (06) : 3158 - 3166
  • [10] UNSTEADY ROTO-TRANSLATIONAL VISCOUS FLOW: ANALYTICAL SOLUTION TO NAVIER-STOKES EQUATIONS IN CYLINDRICAL GEOMETRY
    Bocci, Alessio
    Scarpello, Giovanni Mingari
    Ritelli, Daniele
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2018, 48 : 1 - 21