Numerical solution of the Vlasov-Maxwell system of equations for cylindrical plasmas

被引:0
|
作者
Hoyos, Jaime H. [1 ]
Ramirez, Sebastian [2 ]
Valencia, Jose A. [2 ]
机构
[1] Univ Medellin, Basic Sci Fac, Cra 87 30-65, Medellin, Colombia
[2] Univ Nacl Colombia, Phys & Chem Dept, Campus La Nubia, Manizales, Colombia
关键词
D O I
10.1088/1742-6596/1247/1/012005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We solved numerically the Vlasov-Maxwell system of equations for a bounded cylindrical and radial inhomogeneous plasma which is confined by a strong magnetic field directed along the axis cylinder. Through this solution we found numerically the radial structure of the axial electric field corresponding to the high frequency fundamental transverse magnetic mode propagating in the cylindrical wave guide. Our result shows that the intensity of the electric field tends to be higher in those regions where the plasma is denser and also the field presents oscillations with intensities that decrease and vanish at the radial plasma boundary. This behavior could be relevant in the design of efficient modern plasma based particle accelerators that use the axial electric field to achieve this task.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A numerical scheme for the integration of the Vlasov-Maxwell system of equations
    Mangeney, A
    Califano, F
    Cavazzoni, C
    Travnicek, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 179 (02) : 495 - 538
  • [2] On the Vlasov-Maxwell equations
    Parsa, Z
    Zadorozhny, V
    2005 IEEE PARTICLE ACCELERATOR CONFERENCE (PAC), VOLS 1-4, 2005, : 3042 - 3044
  • [3] LINEARIZED SYSTEM OF VLASOV-MAXWELL EQUATIONS.
    Aslamazyan, E.I.
    Moscow University computational mathematics and cybernetics, 1984, (02) : 78 - 81
  • [4] ON THE STATIONARY SOLUTIONS FOR THE SYSTEM OF THE VLASOV-MAXWELL EQUATIONS
    RUDYKH, GA
    SIDOROV, NA
    SINITSYN, AV
    DOKLADY AKADEMII NAUK SSSR, 1988, 302 (03): : 594 - 597
  • [5] Generalized formulations of Maxwell's equations for numerical Vlasov-Maxwell simulations
    Barthelme, Regine
    Ciarlet, Patrick, Jr.
    Sonnendruecker, Eric
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05): : 657 - 680
  • [6] Lie symmetry approach for The Vlasov-Maxwell system of equations
    Rashidi, Saeede
    Hejazi, S. Reza
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 132 : 1 - 12
  • [7] Hamiltonian splitting for the Vlasov-Maxwell equations
    Crouseilles, Nicolas
    Einkemmer, Lukas
    Faou, Erwan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 283 : 224 - 240
  • [8] Vlasov-Maxwell equations with spin effects
    Crouseilles, Nicolas
    Hervieux, Paul-Antoine
    Hong, Xue
    Manfredi, Giovanni
    JOURNAL OF PLASMA PHYSICS, 2023, 89 (02)
  • [9] Mathematical and numerical methods for Vlasov-Maxwell equations: The contribution of data mining
    Assous, Franck
    Chaskalovic, Joel
    COMPTES RENDUS MECANIQUE, 2014, 342 (10-11): : 560 - 569
  • [10] On numerical methods for Hamiltonian PDEs and a collocation method for the Vlasov-Maxwell equations
    Holloway, JP
    JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 129 (01) : 121 - 133