Towards Effective Software Defect Prediction Using Machine Learning Techniques

被引:0
|
作者
Akshat Pandey [1 ]
Akshay Jadhav [1 ]
机构
[1] Manipal University Jaipur,Computer Science Engineering
关键词
Software defect prediction; Machine learning; Ensemble learning; Software quality assurance;
D O I
10.1007/s42979-024-03458-0
中图分类号
学科分类号
摘要
Software defect prediction plays a crucial role in quality assurance by the early detection of possible flaws in the development process. Machine learning techniques have recently shown promising results, offering automated and accurate prediction models. This paper explores various machine learning techniques for software defect prediction, including supervised learning algorithms like logistic regression, naïve bayes, decision trees, and ensemble methods such as random forest. We delve into the process of feature selection, model training, and evaluation metrics commonly used in this context. Recent studies are reviewed, and challenges and future directions in software defect prediction using machine learning are highlighted. The research directions emphasize the integration of supervised machine learning techniques to detect defect while software development using ten promise repository datasets. By leveraging these techniques, software developers can boost the efficiency and effectiveness of defect detection, leading to improved overall software quality. This research underscores the importance of machine learning in developing robust defect prediction models and the continuous evolution of methodologies to tackle emerging challenges in the field.
引用
收藏
相关论文
共 50 条
  • [21] Validating Unsupervised Machine Learning Techniques for Software Defect Prediction With Generic Metamorphic Testing
    Chan, Pak Yuen Patrick
    Keung, Jacky
    IEEE ACCESS, 2024, 12 : 165155 - 165172
  • [23] Improved prediction of software defects using ensemble machine learning techniques
    Mehta, Sweta
    Patnaik, K. Sridhar
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (16): : 10551 - 10562
  • [24] Improved prediction of software defects using ensemble machine learning techniques
    Sweta Mehta
    K. Sridhar Patnaik
    Neural Computing and Applications, 2021, 33 : 10551 - 10562
  • [25] An empirical study of software reliability prediction using machine learning techniques
    Kumar, Pradeep
    Singh, Yogesh
    International Journal of System Assurance Engineering and Management, 2012, 3 (03) : 194 - 208
  • [26] Machine Learning Empowered Software Defect Prediction System
    Daoud, Mohammad Sh.
    Aftab, Shabib
    Ahmad, Munir
    Khan, Muhammad Adnan
    Iqbal, Ahmed
    Abbas, Sagheer
    Iqbal, Muhammad
    Ihnaini, Baha
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (02): : 1287 - 1300
  • [27] A Standard Baseline for Software Defect Prediction: Using Machine Learning and Explainable AI
    Bommi, Nitin Sai
    Negi, Atul
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 1798 - 1803
  • [28] An improved approach to software defect prediction using a hybrid machine learning model
    Miholca, Diana-Lucia
    2018 20TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2018), 2019, : 443 - 448
  • [29] A Novel Approach to Improve Software Defect Prediction Accuracy Using Machine Learning
    Mehmood, Iqra
    Shahid, Sidra
    Hussain, Hameed
    Khan, Inayat
    Ahmad, Shafiq
    Rahman, Shahid
    Ullah, Najeeb
    Huda, Shamsul
    IEEE ACCESS, 2023, 11 : 63579 - 63597
  • [30] Software Visualization and Deep Transfer Learning for Effective Software Defect Prediction
    Chen, Jinyin
    Hu, Keke
    Yu, Yue
    Chen, Zhuangzhi
    Xuan, Qi
    Liu, Yi
    Filkov, Vladimir
    2020 ACM/IEEE 42ND INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2020), 2020, : 578 - 589