Holographic stress tensor correlators on higher genus Riemann surfaces

被引:0
|
作者
He, Song [1 ,2 ,3 ]
Li, Yun-Ze [1 ,2 ]
Xie, Yunfei [1 ,2 ]
机构
[1] Jilin Univ, Ctr Theoret Phys, Changchun 130012, Peoples R China
[2] Jilin Univ, Coll Phys, Changchun 130012, Peoples R China
[3] Max Planck Inst Grav Phys, Albert Einstein Inst, Muhlenberg 1, D-14476 Golm, Germany
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 10期
关键词
AdS-CFT Correspondence; Field Theories in Lower Dimensions; Gauge-Gravity Correspondence; Conformal and W Symmetry; LIOUVILLE ACTION; WEIL-PETERSSON; STRING THEORY; FIELD; RENORMALIZATION; UNIFORMIZATION; GEOMETRY; CHARGES; ENERGY;
D O I
10.1007/JHEP10(2024)208
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this work, we present a comprehensive study of holographic stress tensor correlators on general Riemann surfaces, extending beyond the previously well-studied torus cases to explore higher genus conformal field theories (CFTs) within the framework of the Anti-de Sitter/conformal field theory (AdS/CFT) correspondence. We develop a methodological approach to compute holographic stress tensor correlators, employing the Schottky uniformization technique to address the handlebody solutions for higher genus Riemann surfaces. Through rigorous calculations, we derive four-point stress tensor correlators, alongside recurrence relations for higher-point correlators, within the AdS3/CFT2 context. Additionally, our research delves into the holography of cutoff AdS3 spaces, offering novel insights into the lower-point correlators of the TT<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-deformed theories on higher genus Riemann surfaces up to the first deformation order.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Holographic torus correlators of stress tensor in AdS3/CFT2
    Song He
    Yi Li
    Yun-Ze Li
    Yunda Zhang
    Journal of High Energy Physics, 2023
  • [22] Quivers as calculators: counting, correlators and Riemann surfaces
    Pasukonis, Jurgis
    Ramgoolam, Sanjaye
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (04):
  • [23] Holographic torus correlators of stress tensor in AdS3/CFT2
    He, Song
    Li, Yi
    Li, Yun-Ze
    Zhang, Yunda
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (06)
  • [24] N = 2 SUPERCONFORMAL ALGEBRA ON HIGHER-GENUS RIEMANN SURFACES
    KUANG, LM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (10): : 2911 - 2918
  • [25] CORRELATION-FUNCTIONS AND ZERO MODES ON HIGHER GENUS RIEMANN SURFACES
    BONINI, M
    IENGO, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1988, 3 (04): : 841 - 860
  • [26] RIEMANN SURFACES OF INFINITE GENUS
    HEINS, M
    ANNALS OF MATHEMATICS, 1952, 55 (02) : 296 - 317
  • [27] MODULAR TRANSFORMATIONS OF CONFORMAL BLOCKS IN WZW MODELS ON RIEMANN SURFACES OF HIGHER GENUS
    LI, M
    YU, M
    PHYSICS LETTERS B, 1990, 241 (04) : 522 - 530
  • [28] Tensor models and embedded Riemann surfaces
    Ryan, James P.
    PHYSICAL REVIEW D, 2012, 85 (02):
  • [29] RIEMANN TENSOR AND STRESS SINGULARITIES
    SACKFIELD, A
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 71 (JAN): : 131 - +
  • [30] HIGHER GENUS CORRELATORS FOR THE COMPLEX MATRIX MODEL
    AMBJORN, J
    KRISTJANSEN, CF
    MAKEENKO, YM
    MODERN PHYSICS LETTERS A, 1992, 7 (34) : 3187 - 3202