Holographic stress tensor correlators on higher genus Riemann surfaces

被引:0
|
作者
He, Song [1 ,2 ,3 ]
Li, Yun-Ze [1 ,2 ]
Xie, Yunfei [1 ,2 ]
机构
[1] Jilin Univ, Ctr Theoret Phys, Changchun 130012, Peoples R China
[2] Jilin Univ, Coll Phys, Changchun 130012, Peoples R China
[3] Max Planck Inst Grav Phys, Albert Einstein Inst, Muhlenberg 1, D-14476 Golm, Germany
来源
关键词
AdS-CFT Correspondence; Field Theories in Lower Dimensions; Gauge-Gravity Correspondence; Conformal and W Symmetry; LIOUVILLE ACTION; WEIL-PETERSSON; STRING THEORY; FIELD; RENORMALIZATION; UNIFORMIZATION; GEOMETRY; CHARGES; ENERGY;
D O I
10.1007/JHEP10(2024)208
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this work, we present a comprehensive study of holographic stress tensor correlators on general Riemann surfaces, extending beyond the previously well-studied torus cases to explore higher genus conformal field theories (CFTs) within the framework of the Anti-de Sitter/conformal field theory (AdS/CFT) correspondence. We develop a methodological approach to compute holographic stress tensor correlators, employing the Schottky uniformization technique to address the handlebody solutions for higher genus Riemann surfaces. Through rigorous calculations, we derive four-point stress tensor correlators, alongside recurrence relations for higher-point correlators, within the AdS3/CFT2 context. Additionally, our research delves into the holography of cutoff AdS3 spaces, offering novel insights into the lower-point correlators of the TT<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-deformed theories on higher genus Riemann surfaces up to the first deformation order.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Holographic partition functions and phases for higher genus Riemann surfaces
    Maxfield, Henry
    Ross, Simon F.
    Way, Benson
    CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (12)
  • [2] BOSONIZATION ON HIGHER GENUS RIEMANN SURFACES
    ALVAREZGAUME, L
    BOST, JB
    MOORE, G
    NELSON, P
    VAFA, C
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (03) : 503 - 552
  • [3] Higher genus Riemann minimal surfaces
    Hauswirth, Laurent
    Pacard, Frank
    INVENTIONES MATHEMATICAE, 2007, 169 (03) : 569 - 620
  • [4] Higher genus Riemann minimal surfaces
    Laurent Hauswirth
    Frank Pacard
    Inventiones mathematicae, 2007, 169
  • [5] Higher genus polylogarithms on families of Riemann surfaces
    Ichikawa, Takashi
    NUCLEAR PHYSICS B, 2025, 1013
  • [6] Twisted determinants on higher genus Riemann surfaces
    Russo, R
    Sciuto, S
    NUCLEAR PHYSICS B, 2003, 669 (1-2) : 207 - 232
  • [7] Critical Measures on Higher Genus Riemann Surfaces
    Marco Bertola
    Alan Groot
    Arno B. J. Kuijlaars
    Communications in Mathematical Physics, 2023, 404 : 51 - 95
  • [8] Sugawara construction for higher genus Riemann surfaces
    Schlichenmaier, M
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 43 (1-2) : 323 - 339
  • [9] Laughlin States on Higher Genus Riemann Surfaces
    Klevtsov, Semyon
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 367 (03) : 837 - 871
  • [10] Critical Measures on Higher Genus Riemann Surfaces
    Bertola, Marco
    Groot, Alan
    Kuijlaars, Arno B. J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 404 (01) : 51 - 95