Helmet detection algorithm based on lightweight improved YOLOv8

被引:0
|
作者
Maoli Wang [1 ]
Haitao Qiu [1 ]
Jiarui Wang [1 ]
机构
[1] Qufu Normal University,School of Cyber Science and Engineering
关键词
Helmet detection; YOLOv8; Partial convolution; Shared features; Channel pruning;
D O I
10.1007/s11760-024-03698-w
中图分类号
学科分类号
摘要
Object detection technology enables real-time monitoring of helmet-wearing workers, overcoming manual limitations. However, scholarly improvements prioritize accuracy, complicating the model and rendering it unsuitable for embedded devices with limited resources. This paper presents a lightweight model enhancement approach rooted in YOLOv8. The objective is to minimize parameters and computational load while preserving high detection accuracy, aligning with the deployment constraints of embedded devices. We optimized YOLOv8’s C2f module with partial convolution, creating a C2f-Light variant with fewer parameters and less computation. Additionally, there was a redesign of the detection head, which reduced both the number of parameters and the computational complexity. Introduction of the Wise-IOU as a replacement for the CIOU, thereby reducing the harm of low-quality samples. Furthermore, we employed a channel pruning algorithm to eliminate redundant channels to reduce the model size and expedite inference. Experiments results show that LS-YOLOv8n significantly reduces parameters and computations compared to YOLOv8n, without losing accuracy. The pruned LS-YOLOv8n model exhibits a 52%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$52\%$$\end{document} improvement in FPS and has a model size of 1.9 MB.
引用
收藏
相关论文
共 50 条
  • [31] A Glove-Wearing Detection Algorithm Based on Improved YOLOv8
    Li, Shichu
    Huang, Huiping
    Meng, Xiangyin
    Wang, Mushuai
    Li, Yang
    Xie, Lei
    Distante, Cosimo
    SENSORS, 2023, 23 (24)
  • [32] Concrete Surface Crack Detection Algorithm Based on Improved YOLOv8
    Dong, Xuwei
    Liu, Yang
    Dai, Jinpeng
    SENSORS, 2024, 24 (16)
  • [33] Research on Fire Smoke Detection Algorithm Based on Improved YOLOv8
    Zhang, Tianxin
    Wang, Fuwei
    Wang, Weimin
    Zhao, Qihao
    Ning, Weijun
    Wu, Haodong
    IEEE ACCESS, 2024, 12 : 117354 - 117362
  • [34] YOLOv8-ACCW: Lightweight Grape Leaf Disease Detection Method Based on Improved YOLOv8
    Chen, Zuxing
    Feng, Junjie
    Zhu, Kun
    Yang, Zhenyan
    Wang, Yanhong
    Ren, Mingyue
    IEEE ACCESS, 2024, 12 : 123595 - 123608
  • [35] Target Detection Algorithm for UAV Images Based on Improved YOLOv8
    改进 YOLOv8 的无人机航拍图像目标检测算法
    Liang, Yan (liangyan@cqupt.edu.cn), 2025, 61 (01) : 121 - 130
  • [36] Improved Steel Surface Defect Detection Algorithm Based on YOLOv8
    You, Congzhe
    Kong, Haozheng
    IEEE ACCESS, 2024, 12 : 99570 - 99577
  • [37] An Oracle Bone Inscriptions Detection Algorithm Based on Improved YOLOv8
    Zhen, Qianqian
    Wu, Liang
    Liu, Guoying
    ALGORITHMS, 2024, 17 (05)
  • [38] Improved Road Damage Detection Algorithm of YOLOv8
    Li, Song
    Shi, Tao
    Jing, Fangke
    Computer Engineering and Applications, 2023, 59 (23) : 165 - 174
  • [39] Vehicle Detection Algorithm Based on Improved YOLOv8 in Traffic Surveillance
    Zhou, Fei
    Guo, Dudu
    Wang, Yang
    Wang, Qingqing
    Qin, Yin
    Yang, Zhuomin
    He, Haijun
    Computer Engineering and Applications, 2024, 60 (06)
  • [40] LSKA-YOLOv8: A lightweight steel surface defect detection algorithm based on YOLOv8 improvement
    Tie, Jun
    Zhu, Chengao
    Zheng, Lu
    Wang, Haijiao
    Ruan, Chongwei
    Wu, Mian
    Xu, Ke
    Liu, Jiaqing
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 109 : 201 - 212