Predicting future hospital antimicrobial resistance prevalence using machine learning

被引:0
|
作者
Vihta, Karina-Doris [1 ,2 ,3 ]
Pritchard, Emma [1 ,2 ]
Pouwels, Koen B. [2 ,4 ]
Hopkins, Susan [5 ]
Guy, Rebecca L. [5 ]
Henderson, Katherine [5 ]
Chudasama, Dimple [5 ]
Hope, Russell [5 ]
Muller-Pebody, Berit [5 ]
Walker, Ann Sarah [1 ,2 ,6 ]
Clifton, David [3 ,7 ]
Eyre, David W. [1 ,2 ,6 ,8 ,9 ]
机构
[1] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Med, Modernising Med Microbiol,Expt Med,Res Off, Level 7,Headley Way, Oxford, England
[2] Univ Oxford, Natl Inst Hlth Res, Hlth Protect Res Unit Healthcare Associated Infect, Oxford, England
[3] Univ Oxford, Inst Biomed Engn, Dept Engn Sci, Oxford, England
[4] Univ Oxford, Hlth Econ Res Ctr, Nuffield Dept Populat Hlth, Oxford, England
[5] UK Hlth Secur Agcy, Healthcare Associated Infect Fungal Antimicrobial, London, England
[6] Univ Oxford, Natl Inst Hlth Res, Oxford Biomed Res Ctr, Oxford, England
[7] Univ Oxford, OSCAR Oxford Suzhou Ctr Adv Res, Suzhou, Peoples R China
[8] Univ Oxford, Big Data Inst, Nuffield Dept Populat Hlth, Oxford, England
[9] Oxford Univ Hosp NHS Fdn Trust, John Radcliffe Hosp, Dept Infect Dis & Microbiol, Oxford, England
来源
COMMUNICATIONS MEDICINE | 2024年 / 4卷 / 01期
关键词
ANTIBIOTIC USE; IMPACT;
D O I
10.1038/s43856-024-00606-8
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
BackgroundPredicting antimicrobial resistance (AMR), a top global health threat, nationwide at an aggregate hospital level could help target interventions. Using machine learning, we exploit historical AMR and antimicrobial usage to predict future AMR.MethodsAntimicrobial use and AMR prevalence in bloodstream infections in hospitals in England were obtained per hospital group (Trust) and financial year (FY, April-March) for 22 pathogen-antibiotic combinations (FY2016-2017 to FY2021-2022). Extreme Gradient Boosting (XGBoost) model predictions were compared to the previous value taken forwards, the difference between the previous two years taken forwards and linear trend forecasting (LTF). XGBoost feature importances were calculated to aid interpretability.ResultsHere we show that XGBoost models achieve the best predictive performance. Relatively limited year-to-year variability in AMR prevalence within Trust-pathogen-antibiotic combinations means previous value taken forwards also achieves a low mean absolute error (MAE), similar to or slightly higher than XGBoost. Using the difference between the previous two years taken forward or LTF performs consistently worse. XGBoost considerably outperforms all other methods in Trusts with a larger change in AMR prevalence from FY2020-2021 (last training year) to FY2021-2022 (held-out test set). Feature importance values indicate that besides historical resistance to the same pathogen-antibiotic combination as the outcome, complex relationships between resistance in different pathogens to the same antibiotic/antibiotic class and usage are exploited for predictions. These are generally among the top ten features ranked according to their mean absolute SHAP values.ConclusionsYear-to-year resistance has generally changed little within Trust-pathogen-antibiotic combinations. In those with larger changes, XGBoost models can improve predictions, enabling informed decisions, efficient resource allocation, and targeted interventions. Antibiotics play an important role in treating serious bacterial infections. However, with the increased usage of antibiotics, they are becoming less effective. In our study, we use machine learning to learn from past antibiotic resistance and usage in order to predict what resistance will look like in the future. Different hospitals across England have very different resistance levels, however, within each hospital, these levels remain stable over time. When larger changes in resistance occurred over time in individual hospitals, our methods were able to predict these. Understanding how much resistance there is in hospital populations, and what may occur in the future can help determine where resources and interventions should be directed. Vihta et al. use past hospital data including bloodstream infection cases, susceptibilities, and antimicrobial use to predict future resistance prevalence. Machine learning can improve the accuracy of predictions potentially impacting interventions.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Predicting no-show appointments in a pediatric hospital in Chile using machine learning
    Dunstan, J.
    Villena, F.
    Hoyos, J. P.
    Riquelme, V.
    Royer, M.
    Ramirez, H.
    Peypouquet, J.
    HEALTH CARE MANAGEMENT SCIENCE, 2023, 26 (02) : 313 - 329
  • [32] Predicting Hospital Admission by Adding Chief Complaints Using Machine Learning Approach
    Wu, I-Chin
    Chen, Chu-En
    Lin, Zhi-Rou
    Chen, Tzu-Li
    Feng, Yen-Yi
    HCI IN BUSINESS, GOVERNMENT AND ORGANIZATIONS, HCIBGO 2022, 2022, 13327 : 233 - 244
  • [33] Predicting no-show appointments in a pediatric hospital in Chile using machine learning
    J. Dunstan
    F. Villena
    J.P. Hoyos
    V. Riquelme
    M. Royer
    H. Ramírez
    J. Peypouquet
    Health Care Management Science, 2023, 26 : 313 - 329
  • [34] Predicting interfacial thermal resistance by machine learning
    Yen-Ju Wu
    Lei Fang
    Yibin Xu
    npj Computational Materials, 5
  • [35] Predicting interfacial thermal resistance by machine learning
    Wu, Yen-Ju
    Fang, Lei
    Xu, Yibin
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [36] Predicting Future Earnings Changes Using Machine Learning and Detailed Financial Data
    Chen, Xi
    Cho, Yang Ha
    Dou, Yiwei
    Lev, Baruch
    JOURNAL OF ACCOUNTING RESEARCH, 2022, 60 (02) : 467 - 515
  • [37] PREDICTING THE FUTURE COVID-19 USING SUPERVISED MACHINE LEARNING MODELS
    Shake, Saida
    Lavanya, Ch.
    Lakshmi, S. Venkata Maha
    Bhavani, B.
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (04) : 1375 - 1378
  • [38] Using Machine Learning Algorithms to Predict Antimicrobial Resistance and Assist Empirical Treatment
    Feretzakis, Georgios
    Loupelis, Evangelos
    Sakagianni, Aikaterini
    Kalles, Dimitris
    Lada, Malvina
    Christopoulos, Constantinos
    Dimitrellos, Evangelos
    Martsoukou, Maria
    Skarmoutsou, Nikoleta
    Petropoulou, Stavroula
    Alexiou, Konstantinos
    Velentza, Aikaterini
    Michelidou, Sophia
    Valakis, Konstantinos
    IMPORTANCE OF HEALTH INFORMATICS IN PUBLIC HEALTH DURING A PANDEMIC, 2020, 272 : 75 - 78
  • [39] Using machine learning techniques to predict antimicrobial resistance in stone disease patients
    Lazaros Tzelves
    Lazaros Lazarou
    Georgios Feretzakis
    Dimitris Kalles
    Panagiotis Mourmouris
    Evangelos Loupelis
    Spyridon Basourakos
    Marinos Berdempes
    Ioannis Manolitsis
    Iraklis Mitsogiannis
    Andreas Skolarikos
    Ioannis Varkarakis
    World Journal of Urology, 2022, 40 : 1731 - 1736
  • [40] Using machine learning techniques to predict antimicrobial resistance in stone disease patients
    Tzelves, Lazaros
    Lazarou, Lazaros
    Feretzakis, Georgios
    Kalles, Dimitris
    Mourmouris, Panagiotis
    Loupelis, Evangelos
    Basourakos, Spyridon
    Berdempes, Marinos
    Manolitsis, Ioannis
    Mitsogiannis, Iraklis
    Skolarikos, Andreas
    Varkarakis, Ioannis
    WORLD JOURNAL OF UROLOGY, 2022, 40 (07) : 1731 - 1736