Fast machine-learning-enabled size reduction of microwave components using response features

被引:0
|
作者
Koziel, Slawomir [1 ,2 ]
Pietrenko-Dabrowska, Anna [2 ]
机构
[1] Reykjavik Univ, Engn Optimizat & Modeling Ctr, IS-102 Reykjavik, Iceland
[2] Gdansk Univ Technol, Fac Elect Telecommun & Informat, PL-80233 Gdansk, Poland
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Microwave circuits; Compact circuits; Simulation-driven design; Size reduction; Numerical optimization; Machine learning; Surrogate modeling; EM OPTIMIZATION; GLOBAL OPTIMIZATION; BANDPASS FILTER; DESIGN CLOSURE; POWER DIVIDER; ANTENNA; MODEL; SENSITIVITY; SEARCH;
D O I
10.1038/s41598-024-73323-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Achieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended, yet hindered by the excessive expenses associated with system evaluation, typically conducted through electromagnetic (EM) simulation. This challenge is further compounded by the fact that size reduction is a constrained problem entailing expensive constraints. This paper introduces an innovative method for cost-effective explicit miniaturization of microwave components on a global scale. Our approach leverages response feature technology, formulating the optimization problem based on a set of characteristic points derived from EM-analyzed responses, combined with an implicit constraint handling approach. Both elements facilitate handling size reduction by transforming it into an unconstrained problem and regularizing the objective function. The core search engine employs a machine-learning framework with kriging-based surrogates refined using the predicted improvement in the objective function as the infill criterion. Our algorithm is demonstrated using two miniaturized couplers and is shown superior over several benchmark routines, encompassing both conventional (gradient-based) and population-based procedures, alongside a machine learning technique. The primary strengths of the proposed framework lie in its reliability, computational efficiency (with a typical optimization cost ranging from 100 to 150 EM circuit analyses), and straightforward setup.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Machine-Learning-Enabled DDoS Attacks Detection in P4 Programmable Networks
    Francesco Musumeci
    Ali Can Fidanci
    Francesco Paolucci
    Filippo Cugini
    Massimo Tornatore
    Journal of Network and Systems Management, 2022, 30
  • [32] A Design For A Machine-Learning-Enabled Multi-Channel Messaging Framework for Financial Service Institutions
    Salami, Olusola
    Mnkandla, Ernest
    5TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, BIG DATA, COMPUTING AND DATA COMMUNICATION SYSTEMS (ICABCD2022), 2022,
  • [33] Machine-Learning-Enabled Virtual Screening for Inhibitors of Lysine-Specific Histone Demethylase 1
    Zhou, Jiajun
    Wu, Shiying
    Lee, Boon Giin
    Chen, Tianwei
    He, Ziqi
    Lei, Yukun
    Tang, Bencan
    Hirst, Jonathan D.
    MOLECULES, 2021, 26 (24):
  • [34] Optimization of microwave components using machine learning and rapid sensitivity analysis
    Koziel, Slawomir
    Pietrenko-Dabrowska, Anna
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Rapid Forecasting of Cyber Events Using Machine Learning-Enabled Features
    Ahmed, Yussuf
    Azad, Muhammad Ajmal
    Asyhari, Taufiq
    INFORMATION, 2024, 15 (01)
  • [36] Machine-learning-enabled geometric compliance improvement in two-photon lithography without hardware modifications
    Yang, Yuhang
    Kelkar, Varun A.
    Rajput, Hemangg S.
    Coariti, Adriana C. Salazar
    Toussaint Jr, Kimani C.
    Shao, Chenhui
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 76 : 841 - 849
  • [37] Machine-Learning-Enabled Multi-Frequency Synthesis of Space-Time-Coding Digital Metasurfaces
    Rossi, Marco
    Zhang, Lei
    Chen, Xiao Qing
    Liu, Che
    Castaldi, Giuseppe
    Cui, Tie Jun
    Galdi, Vincenzo
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (40)
  • [38] Machine-Learning-Enabled Exploration of Morphology Influence on Wire-Array Electrodes for Electrochemical Nitrogen Fixation
    Hoar, Benjamin B.
    Lu, Shengtao
    Liu, Chong
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (12): : 4625 - 4630
  • [39] Machine-learning-enabled intelligence computing for crisis management in small and medium-sized enterprises (SMEs)
    Zhao, Zichao
    Li, Dexuan
    Dai, Wensheng
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2023, 191
  • [40] Machine-Learning-Enabled Diagnostics with Improved Visualization of Disease Lesions in Chest X-ray Images
    Rahman, Md Fashiar
    Tseng, Tzu-Liang
    Pokojovy, Michael
    McCaffrey, Peter
    Walser, Eric
    Moen, Scott
    Vo, Alex
    Ho, Johnny C.
    DIAGNOSTICS, 2024, 14 (16)