Machine learning technique for carbon sequestration estimation of mango orchards area using Sentinel-2 Data

被引:0
|
作者
Gitsada Panumonwatee [1 ]
Sittichai Choosumrong [1 ]
Savent Pampasit [2 ]
Rudklow Premprasit [1 ]
Tatsuya Nemoto [3 ]
Venkatesh Raghavan [4 ]
机构
[1] Naresuan University,Department of Natural Resources and Environment, Faculty of Agriculture Nature Resources and Environment
[2] Naresuan University,Center of Excellence in Nonlinear Analysis and Optimization, Faculty of Science
[3] Naresuan University,Faculty of Social Sciences
[4] Osaka Metropolitan University,Graduate School of Science
来源
Carbon Research | / 4卷 / 1期
关键词
Carbon sequestration; Random Forest; Remote sensing; Vegetation indices;
D O I
10.1007/s44246-025-00201-z
中图分类号
学科分类号
摘要
This study evaluates the effectiveness of Sentinel-2 satellite imagery in assessing carbon sequestration in mango orchards using multiple vegetation indices (VIs). We established 49 quadrat sampling plots (40*40 m) across diverse mango orchards in Phitsanulok Province, Thailand to collect ground truth data for aboveground carbon storage estimation. Twelve vegetation indices were analyzed, including Normalized difference vegetation index (NDVI), Normalized difference red edge index (NDRE), Enhanced Vegetation Index (EVI), Green normalized difference vegetation index (GNDVI), Green Chlorophyll Index (Clgreen), Ratio Vegetation Index (RVI), Triangular vegetation index (TVI), Modified Triangular vegetation index (TVI-2), Angular Vegetation Index (AVI), Normalized Pigment Chlorophyll Ratio Index (NPCRI), and Modified Simple Ratio Index (MSRI) as well as Chlorophyll Index Red Edge (CIRE). These indices demonstrated significant correlations with field-measured biomass (R2 ranging from 0.04 to 0.80). The Random Forest (RF) ensemble model, optimized with 400 trees (ntree) and 20 variables at each split (mtry), integrated these indices to predict carbon storage. The model achieved exceptional accuracy (R2=0.97) with a Root Mean Square Error (RMSE) of 1.57 ton C ha-1 and Mean Absolute Error (MAE) of 1.05 ton C ha-1. Feature importance analysis revealed that f (NDVI), f (NDRE), f (TVI-2), and f (GNDVI) contributed 0.283, 0.160, 0.377, and 0.181, respectively, to the model's predictive power. Cross-validation using a 70:30 training–testing split confirmed the model's robustness. The developed model enables efficient monitoring of carbon sequestration of mango plantations, with the mean carbon sequestration calculated to be 40.6 ton C ha-1 (σ=42.19, n=49) and wide range of carbon sequestration values (4.13 to 218.6 ton C ha-1). This methodology provides a cost-effective, scalable approach for carbon seqesstration assessment in fruit tree plantations, supporting both sustainable agricultural practices and carbon credit initiatives in the agricultural sector.
引用
收藏
相关论文
共 50 条
  • [31] Tree Species Classification Using Hyperion and Sentinel-2 Data with Machine Learning in South Korea and China
    Lim, Joongbin
    Kim, Kyoung-Min
    Jin, Ri
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (03)
  • [32] COMBINING UAS AND SENTINEL-2 DATA TO ESTIMATE CANOPY PARAMETERS OF A COTTON CROP USING MACHINE LEARNING
    Ashapure, Akash
    Jung, Jinha
    Oh, Sungchan
    Chang, Anjin
    Dube, Nothabo
    Landivar, Juan
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5199 - 5202
  • [33] Crop Type Identification and Mapping Using Machine Learning Algorithms and Sentinel-2 Time Series Data
    Feng, Siwen
    Zhao, Jianjun
    Liu, Tingting
    Zhang, Hongyan
    Zhang, Zhengxiang
    Guo, Xiaoyi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (09) : 3295 - 3306
  • [34] Atlantic forest woody carbon stock estimation for different successional stages using Sentinel-2 data
    Verly, Otavio Miranda
    Leite, Rodrigo Vieira
    Tavares-Junior, Ivaldo da Silva
    da Rocha, Samuel Jose Silva Soares
    Leite, Helio Garcia
    Gleriani, Jose Marinaldo
    Rufino, Maria Paula Miranda Xavier
    Silva, Valeria de Fatima
    Torres, Carlos Moreira Miquelino Eleto
    Plata-Rueda, Angelica
    Castro, Barbara Monteiro
    Zanuncio, Jose Cola
    Javocine, Laercio Antonio Goncalves
    ECOLOGICAL INDICATORS, 2023, 146
  • [35] Comparative Analysis of Deep Learning and Machine Learning Models for Burned Area Estimation Using Sentinel-2 Image: A Case Study in Mugla-Bodrum, Turkey
    Tonbul, Hasan
    Yilmaz, Elif Ozlem
    Kavzoglu, Taskin
    2023 10TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN AIR AND SPACE TECHNOLOGIES, RAST, 2023,
  • [36] Synergetic Use of Sentinel-1 and Sentinel-2 Data for Wheat-Crop Height Monitoring Using Machine Learning
    Nduku, Lwandile
    Munghemezulu, Cilence
    Mashaba-Munghemezulu, Zinhle
    Ratshiedana, Phathutshedzo Eugene
    Sibanda, Sipho
    Chirima, Johannes George
    AGRIENGINEERING, 2024, 6 (02): : 1093 - 1116
  • [37] Object-based machine learning approach for soybean mapping using temporal sentinel-1/sentinel-2 data
    Kumari, Mamta
    Pandey, Varun
    Choudhary, Karun Kumar
    Murthy, C. S.
    GEOCARTO INTERNATIONAL, 2022, 37 (23) : 6848 - 6866
  • [38] Estimation of Canopy Structure of Field Crops Using Sentinel-2 Bands with Vegetation Indices and Machine Learning Algorithms
    Zou, Xiaochen
    Zhu, Sunan
    Mottus, Matti
    REMOTE SENSING, 2022, 14 (12)
  • [39] Sentinel-2 data classifications for the Baikal natural area
    Avramenko, Yurii, V
    Popova, Anastasia K.
    Fedorov, Roman K.
    27TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS, ATMOSPHERIC PHYSICS, 2021, 11916
  • [40] A Deep Learning Approach for Calamity Assessment Using Sentinel-2 Data
    Scharvogel, Daniel
    Brandmeier, Melanie
    Weis, Manuel
    FORESTS, 2020, 11 (12): : 1 - 21