Ventricular Arrhythmia Classification Using Classical and Neural Network Approaches

被引:0
|
作者
L. A. Manilo [1 ]
A. P. Nemirko [1 ]
E. G. Evdakova [1 ]
机构
[1] St. Petersburg Electrotechnical University “LETI”,
关键词
electrocardiogram signals frequency analysis; short electrocardiogram signals segments; classification of ventricular arrhythmias; classical machine learning methods; neural network methods;
D O I
10.1134/S1054661824701037
中图分类号
学科分类号
摘要
引用
收藏
页码:1015 / 1020
页数:5
相关论文
共 50 条
  • [21] A novel deep convolutional neural network for arrhythmia classification
    Dang, Hao
    Sun, Muyi
    Zhang, Guanhong
    Zhou, Xiaoguang
    Chang, Qing
    Xu, Xiangdong
    2019 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2019, : 7 - 11
  • [22] ARTIFICIAL NEURAL NETWORK BASED ECG ARRHYTHMIA CLASSIFICATION
    Haseena, H.
    Joseph, Paul K.
    Mathew, Abraham T.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2009, 9 (04) : 507 - 525
  • [23] DESIGN OF A VLSI HAMMING NEURAL NETWORK FOR ARRHYTHMIA CLASSIFICATION
    Ghanavti, Behzad
    Shomalnasab, Gholamreza
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2009, 18 (04) : 825 - 839
  • [24] DSP-based arrhythmia classification using wavelet transform and probabilistic neural network
    Antonio Gutierrez-Gnecchi, Jose
    Morfin-Magana, Rodrigo
    Lorias-Espinoza, Daniel
    del Carmen Tellez-Anguiano, Adriana
    Reyes-Archundia, Enrique
    Mendez-Patino, Arturo
    Castaneda-Miranda, Rodrigo
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 32 : 44 - 56
  • [25] Detection and classification of arrhythmia type using hybrid model of LSTM with convolutional neural network
    A. Anbarasi
    T. Ravi
    Applied Nanoscience, 2023, 13 : 3435 - 3445
  • [26] Interpreting Arrhythmia Classification Using Deep Neural Network and CAM-Based Approach
    Martono, Niken Prasasti
    Nishiguchi, Toru
    Ohwada, Hayato
    2022 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS (ICCBB 2022), 2022, : 35 - 40
  • [27] ECG Arrhythmia Classification Using STFT-Based Spectrogram and Convolutional Neural Network
    Huang, Jingshan
    Chen, Binqiang
    Yao, Bin
    He, Wangpeng
    IEEE ACCESS, 2019, 7 : 92871 - 92880
  • [28] Detection and classification of arrhythmia type using hybrid model of LSTM with convolutional neural network
    Anbarasi, A.
    Ravi, T.
    APPLIED NANOSCIENCE, 2022, 13 (5) : 3435 - 3445
  • [29] A study on arrhythmia classification based on local maximum scalogram using convolutional neural network
    Lee H.-J.
    Min K.-J.
    Lee S.-Y.
    Moon J.-M.
    Lee K.-H.
    Lee J.-E.
    Lee J.-W.
    Transactions of the Korean Institute of Electrical Engineers, 2021, 70 (05): : 791 - 804
  • [30] Automated arrhythmia classification using depthwise separable convolutional neural network with focal loss
    Lu, Yi
    Jiang, Mingfeng
    Wei, Liying
    Zhang, Jucheng
    Wang, Zhikang
    Wei, Bo
    Xia, Ling
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 69