Estimation and specification test for diffusion models with stochastic volatility

被引:0
|
作者
Lopez-Perez, A. [1 ]
Febrero-Bande, M. [1 ,2 ]
Gonzalez-Manteiga, W. [1 ,2 ]
机构
[1] Univ Santiago De Compostela, Dept Stat Math Anal & Optimizat, Rua Lope Gomez de Marzoa, Santiago De Compostela 15782, Spain
[2] Galician Ctr Math Res & Technol CITMAga, Rua Constantino Candeira S-N, Santiago De Compostela 15705, Spain
关键词
Diffusion processes; Goodness-of-fit; Stochastic differential equations; Stochastic volatility; GOODNESS-OF-FIT; MAXIMUM-LIKELIHOOD-ESTIMATION; CONTINUOUS-TIME MODELS; MONTE-CARLO METHODS; INTEGRATED VOLATILITY; BAYESIAN-INFERENCE; PARAMETRIC FORM; OPTIONS; VARIANCE; SIMULATION;
D O I
10.1007/s00362-024-01652-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given the importance of continuous-time stochastic volatility models to describe the dynamics of interest rates, we propose a goodness-of-fit test for the parametric form of the drift and diffusion functions, based on a marked empirical process of the residuals built with an adapted Kalman Filter estimation. The test statistics are constructed using a continuous functional (Kolmogorov-Smirnov and Cr & aacute;mer-von Mises) over the empirical processes. Both, the different estimation procedures (including other alternatives as for example methods based on Markov Chain Monte Carlo or Particle filters) and the new proposed tests are compared in different simulation studies. The tests are calibrated with a specific bootstrap method using the estimation of a discrete version of the diffusion model with stochastic volatility. Finally, an application of the procedures to real data is provided.
引用
收藏
页数:36
相关论文
共 50 条
  • [21] CALIBRATING LOCAL VOLATILITY MODELS WITH STOCHASTIC DRIFT AND DIFFUSION
    Ogetbil, Orcan
    Ganesan, Narayan
    Hientzsch, Bernhard
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2022, 25 (02)
  • [22] BAYESIAN ESTIMATION OF STOCHASTIC-VOLATILITY JUMP-DIFFUSION MODELS ON INTRADAY PRICE RETURNS
    Ficura, Milan
    Witzany, Jiri
    18TH AMSE: APPLICATIONS OF MATHEMATICS AND STATISTICS IN ECONOMICS, 2015,
  • [23] Volatility activity: Specification and estimation
    Todorov, Viktor
    Tauchen, George
    Grynkiv, Laryna
    JOURNAL OF ECONOMETRICS, 2014, 178 : 180 - 193
  • [24] Estimation and forecasting of long memory stochastic volatility models
    Abbara, Omar
    Zevallos, Mauricio
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2023, 27 (01): : 1 - 24
  • [25] Data cloning estimation for asymmetric stochastic volatility models
    Bermudez, P. De Zea
    Marin, J. Miguel
    Veiga, Helena
    ECONOMETRIC REVIEWS, 2020, 39 (10) : 1057 - 1074
  • [26] Recursive estimation for continuous time stochastic volatility models
    Gong, H.
    Thavaneswaran, A.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (11) : 1770 - 1774
  • [27] On periodic autoregressive stochastic volatility models: structure and estimation
    Boussaha, Nadia
    Hamdi, Faycal
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (09) : 1637 - 1668
  • [28] Range-based estimation of stochastic volatility models
    Alizadeh, S
    Brandt, MW
    Diebold, FX
    JOURNAL OF FINANCE, 2002, 57 (03): : 1047 - 1091
  • [29] Parameter estimation for discretely observed stochastic volatility models
    Genon-Catalot, V
    Jeantheau, T
    Laredo, C
    BERNOULLI, 1999, 5 (05) : 855 - 872
  • [30] Efficient estimation of drift parameters in stochastic volatility models
    Gloter, Arnaud
    FINANCE AND STOCHASTICS, 2007, 11 (04) : 495 - 519