Global Well-Posedness of the Navier-Stokes-Darcy System in 3D Horizontally Infinite Strip DomainGlobal Well-Posedness of the Navier-Stokes-Darcy System...N. Gao, L. Yao

被引:0
|
作者
Ningning Gao [1 ]
Lei Yao [2 ]
机构
[1] Northwest University,School of Mathematics
[2] Northwestern Polytechnical University,School of Mathematics and Statistics
来源
The Journal of Geometric Analysis | 2025年 / 35卷 / 2期
关键词
Navier-Stokes-Darcy system; Global well-posedness; Dirichlet-Neumann operator; 35Q30; 35Q35; 35A01; 35D35;
D O I
10.1007/s12220-024-01879-0
中图分类号
学科分类号
摘要
We are concerned with the initial boundary value problem of the Navier-Stokes-Darcy system in a 3D strip domain. The global well-posedness of the strong solution is shown in the strip domain with a flat interface separating incompressible fluid and porous medium flow. In addition, some exponential decay rates are established. The analysis is based on interpolation estimates and structure of the equations. It is worth mentioning that the property of Dirichlet-Neumann operator plays a key role in the proof.
引用
收藏
相关论文
共 50 条
  • [41] Uniform global well-posedness of the Navier-Stokes-Coriolis system in a new critical space
    de Almeida, Marcelo F.
    Ferreira, Lucas C. F.
    Lima, Lidiane S. M.
    MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (3-4) : 735 - 750
  • [42] Well-posedness of the Stokes-transport system in bounded domains and in the infinite strip
    Leblond, Antoine
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 158 : 120 - 143
  • [43] On the global well-posedness for the 3D axisymmetric incompressible Keller-Segel-Navier-Stokes equations
    Hua, Qiang
    Zhang, Qian
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (05):
  • [44] On the well-posedness of 3-D Navier-Stokes-Maxwell system with one slow variable
    Yue, Gaocheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
  • [45] Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MUD equations
    Zhai, Xiaoping
    Yin, Zhaoyang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) : 1359 - 1412
  • [46] Global Well-Posedness of the 3D Generalized Navier-Stokes Equations with Fractional Partial Dissipation
    Fengping Li
    Baoquan Yuan
    Acta Applicandae Mathematicae, 2021, 171
  • [47] Global Well-Posedness of the 3D Generalized Navier-Stokes Equations with Fractional Partial Dissipation
    Li, Fengping
    Yuan, Baoquan
    ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
  • [48] GLOBAL WELL-POSEDNESS OF THE 3D NAVIER-STOKES EQUATIONS PERTURBED BY A DETERMINISTIC VECTOR FIELD
    Flandoli, Franco
    Hofmanova, Martina
    Luo, Dejun
    Nilssen, Torstein
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (04): : 2568 - 2586
  • [49] Calmed 3D Navier–Stokes Equations: Global Well-Posedness, Energy Identities, Global Attractors, and Convergence
    Enlow, Matthew
    Larios, Adam
    Wu, Jiahong
    Journal of Nonlinear Science, 2024, 34 (06)
  • [50] Global well-posedness of 3-D density-dependent Navier-Stokes system with variable viscosity
    Hammadi Abidi
    Ping Zhang
    Science China Mathematics, 2015, 58 : 1129 - 1150