Imperatorin promotes melanin degradation in keratinocytes through facilitating autophagy via the PI3K/Akt signaling pathway

被引:1
|
作者
Huang, Pan [1 ]
Yang, Zhibo [1 ]
Wang, Haizhen [1 ]
Wang, Chang [1 ]
Luo, Meijunzi [1 ]
Zhou, Rong [1 ]
Pan, Yi [1 ]
机构
[1] Univ Chinese Med, Affiliated Hosp 2, Dept Dermatol, Domest Class Discipline Construct Project Chinese, Changsha 410005, Hunan, Peoples R China
关键词
Melanin; Hyperpigmentation; Imperatorin; Autophagy; Keratinocytes; The PI3K/Akt signaling pathway; ANGELICA-DAHURICA; TYROSINASE; INFLAMMATION; COLOR;
D O I
10.1007/s00403-024-03559-z
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
PurposeMelanin's pivotal role in skin protection and its overproduction leading to hyperpigmentation disorders highlight the necessity of regulating melanogenesis, with autophagy identified as a key degradation pathway. Imperatorin, a compound from Angelica dahurica, has been revealed to reduce melanin in epidermal keratinocytes, with the specific effects and mechanisms unknown. The purpose of this study was to investigate the mechanism by which imperatorin, reduces melanin production in HaCaT cells, with a focus on its potential role in promoting autophagy and regulating the PI3K/Akt signaling pathway.MethodsThe study used HaCaT cells to investigate the effects of imperatorin on melanin production, autophagy, and PI3K/Akt signaling. Melanin content was measured using a spectrophotometric method. Protein levels of PMEL, ATG1, ATG5, and LC3B II were assessed by Western blotting. Autophagy was further visualized by GFP-LC3B puncta formation. The autophagy inhibitor 3-MA, the PI3K/Akt inhibitor LY294002 and PI3K/Akt activator 740 Y-P were used to assess the role of autophagy and PI3K/Akt signaling in imperatorin's effects. Cell viability was monitored to ensure that imperatorin's effects were not due to cytotoxicity.ResultsImperatorin reduced melanin content in HaCaT cells in a dose-dependent manner without compromising cell viability. This reduction in melanin was accompanied by decreased levels of PMEL protein, a key player in melanosome formation. Additionally, imperatorin promoted autophagy in HaCaT cells, as evidenced by increased levels of autophagy-associated markers ATG1, ATG5, and LC3B II, as well as an increase in GFP-LC3B puncta. The autophagy inhibitor 3-MA partially reversed the effects of imperatorin on both autophagy markers and PMEL levels, indicating that autophagy plays a crucial role in imperatorin's depigmentation action. Furthermore, imperatorin inhibited Akt and mTOR phosphorylation, which are downstream targets of PI3K/Akt signaling, enhancing autophagy and further reducing melanin levels. The PI3K/Akt inhibitor LY294002 amplified imperatorin's effects on PI3K and Akt phosphorylation, autophagy, and melanin levels. While, PI3K/Akt activator 740 Y-P reversed imperatorin's effects on these factors.ConclusionsImperatorin reduces melanin in HaCaT cells via promoting autophagy and melanin degradation, possibly via the PI3K/Akt signaling. Taken together, imperatorin has the therapeutic potential for the treatment of hyperpigmentation disorders.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] CCNI2 promotes pancreatic cancer through PI3K/AKT signaling pathway
    Hu, Bingyang
    Zhang, Wenzhi
    Zhang, Changsheng
    Li, Chonghui
    Zhang, Ning
    Pan, Ke
    Ge, Xinlan
    Wan, Tao
    BIOMOLECULES AND BIOMEDICINE, 2024, 24 (02): : 323 - 336
  • [22] Leptin promotes pulmonary fibrosis development by inhibiting autophagy via PI3K/Akt/mTOR pathway
    Gui, Xianhua
    Chen, Hongwei
    Cai, Hourong
    Sun, Lingyun
    Gu, Luo
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 498 (03) : 660 - 666
  • [23] The PI3K/Akt/mTOR signaling pathway
    Dennis, P. A.
    ANNALS OF ONCOLOGY, 2011, 22 : 19 - 19
  • [24] Physalin A Induces Apoptosis and Autophagy in Hepatocellular Carcinoma via Inhibition of PI3K/Akt Signaling Pathway
    Xiang Shang
    Zhen Chen
    Jianxiong Liu
    Shuguo Xu
    Longbiao Li
    Zhihong Yang
    Yuansheng Cui
    Pingzhao Ruan
    Xiaolan Peng
    Biochemical Genetics, 2024, 62 : 633 - 644
  • [25] Titanium particles induce apoptosis by promoting autophagy in macrophages via the PI3K/Akt signaling pathway
    Xian, Guoyan
    Chen, Weishen
    Gu, Minghui
    Ye, Yongyu
    Yang, Guangpu
    Lai, Weiming
    Xiao, Yinbo
    Zhao, Xiaoyi
    Zheng, Linli
    Pan, Baiqi
    Kang, Yunze
    Zhang, Ziji
    Sheng, Puyi
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2020, 108 (09) : 1792 - 1805
  • [26] Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway
    Duan, Junchao
    Yu, Yongbo
    Yu, Yang
    Wang, Ji
    Geng, Weijia
    Jiang, Lizhen
    Li, Qiuling
    Zhou, Xianqing
    Sun, Zhiwei
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2014, 9 : 5131 - 5141
  • [27] Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer
    Jeyamohan, Sridharan
    Moorthy, Rajesh Kannan
    Kannan, Mahesh Kumar
    Arockiam, Antony Joseph Velanganni
    BIOTECHNOLOGY LETTERS, 2016, 38 (08) : 1251 - 1260
  • [28] The Potential Role of CERS1 in Autophagy Through PI3K/AKT Signaling Pathway in Hypophysoma
    Wang, Jingtao
    Zhang, Jimin
    Ma, Dongzhou
    Li, Xiushan
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2020, 19
  • [29] Autophagy of Spinal Microglia Affects the Activation of Microglia through the PI3K/AKT/mTOR Signaling Pathway
    Li, Jingjuan
    Cheng, Xin
    Fu, Dan
    Liang, Yi
    Chen, Cai
    Deng, Wei
    He, Liang
    NEUROSCIENCE, 2022, 482 : 77 - 86
  • [30] Chrysin promotes angiogenesis in rat hindlimb ischemia: Impact on PI3K/Akt/mTOR signaling pathway and autophagy
    Kamel, Rehab
    El Morsy, Engy M.
    Elsherbiny, Marwa E.
    Nour-Eldin, Mahmoud
    DRUG DEVELOPMENT RESEARCH, 2022, 83 (05) : 1226 - 1237