MuCST: restoring and integrating heterogeneous morphology images and spatial transcriptomics data with contrastive learning

被引:0
|
作者
Wang, Yu [1 ,2 ]
Liu, Zaiyi [3 ,4 ]
Ma, Xiaoke [1 ,2 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, 2 South Taibai Rd, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Key Lab Smart Human Comp Interact & Wearable Techn, 2 South Taibai Rd, Xian 710071, Shaanxi, Peoples R China
[3] Southern Med Univ, Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Radiol, 106 Zhongshan Er Rd, Guangzhou 510080, Guangdong, Peoples R China
[4] Guangdong Prov Key Lab Artificial Intelligence Med, 106 Zhongshan Er Rd, Guangzhou 510080, Guangdong, Peoples R China
来源
GENOME MEDICINE | 2025年 / 17卷 / 01期
关键词
Spatial transcriptomics; Spatial domain; Contrastive learning; Multi-modality; GENE-EXPRESSION; CANCER CELLS;
D O I
10.1186/s13073-025-01449-1
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Spatially resolved transcriptomics (SRT) simultaneously measure spatial location, histology images, and transcriptional profiles of cells or regions in undissociated tissues. Integrative analysis of multi-modal SRT data holds immense potential for understanding biological mechanisms. Here, we present a flexible multi-modal contrastive learning for the integration of SRT data (MuCST), which joins denoising, heterogeneity elimination, and compatible feature learning. MuCST accurately identifies spatial domains and is applicable to diverse datasets platforms. Overall, MuCST provides an alternative for integrative analysis of multi-modal SRT data (https://github.com/xkmaxidian/MuCST).
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Spatial domains identification in spatial transcriptomics using modality-aware and subspace-enhanced graph contrastive learning
    Gui, Yang
    Li, Chao
    Xu, Yan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 3703 - 3713
  • [22] Heterogeneous data augmentation in graph contrastive learning for effective negative samples
    Ali, Adnan
    Li, Jinlong
    Chen, Huanhuan
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 118
  • [23] Heterogeneous data augmentation in graph contrastive learning for effective negative samples
    Ali, Adnan
    Li, Jinlong
    Chen, Huanhuan
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 118
  • [24] SGCL: Spatial guided contrastive learning on whole-slide pathological images
    Lin, Tiancheng
    Yu, Zhimiao
    Xu, Zengchao
    Hu, Hongyu
    Xu, Yi
    Chen, Chang-Wen
    MEDICAL IMAGE ANALYSIS, 2023, 89
  • [25] Multimodal contrastive learning for spatial gene expression prediction using histology images
    Min, Wenwen
    Shi, Zhiceng
    Zhang, Jun
    Wan, Jun
    Wang, Changmiao
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [26] THItoGene: a deep learning method for predicting spatial transcriptomics from histological images
    Jia, Yuran
    Liu, Junliang
    Chen, Li
    Zhao, Tianyi
    Wang, Yadong
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (01)
  • [27] Enhancing Spatial Transcriptomics Analysis by Integrating Image-Aware Deep Learning Methods
    Song, Jiarong
    Lamstein, Josh
    Ramaswamy, Vivek Gopal
    Webb, Michelle
    Zada, Gabriel
    Finkbeiner, Steven
    Craig, David W.
    BIOCOMPUTING 2024, PSB 2024, 2024, : 450 - 463
  • [28] ConSpaS: a contrastive learning framework for identifying spatial domains by integrating local and global similarities
    Wu, Siyao
    Qiu, Yushan
    Cheng, Xiaoqing
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [29] SpaGIC: graph-informed clustering in spatial transcriptomics via self-supervised contrastive learning
    Liu, Wei
    Wang, Bo
    Bai, Yuting
    Liang, Xiao
    Xue, Li
    Luo, Jiawei
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [30] A multi-view graph contrastive learning framework for deciphering spatially resolved transcriptomics data
    Zhang, Lei
    Liang, Shu
    Wan, Lin
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (04)