MuCST: restoring and integrating heterogeneous morphology images and spatial transcriptomics data with contrastive learning

被引:0
|
作者
Wang, Yu [1 ,2 ]
Liu, Zaiyi [3 ,4 ]
Ma, Xiaoke [1 ,2 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, 2 South Taibai Rd, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Key Lab Smart Human Comp Interact & Wearable Techn, 2 South Taibai Rd, Xian 710071, Shaanxi, Peoples R China
[3] Southern Med Univ, Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Radiol, 106 Zhongshan Er Rd, Guangzhou 510080, Guangdong, Peoples R China
[4] Guangdong Prov Key Lab Artificial Intelligence Med, 106 Zhongshan Er Rd, Guangzhou 510080, Guangdong, Peoples R China
来源
GENOME MEDICINE | 2025年 / 17卷 / 01期
关键词
Spatial transcriptomics; Spatial domain; Contrastive learning; Multi-modality; GENE-EXPRESSION; CANCER CELLS;
D O I
10.1186/s13073-025-01449-1
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Spatially resolved transcriptomics (SRT) simultaneously measure spatial location, histology images, and transcriptional profiles of cells or regions in undissociated tissues. Integrative analysis of multi-modal SRT data holds immense potential for understanding biological mechanisms. Here, we present a flexible multi-modal contrastive learning for the integration of SRT data (MuCST), which joins denoising, heterogeneity elimination, and compatible feature learning. MuCST accurately identifies spatial domains and is applicable to diverse datasets platforms. Overall, MuCST provides an alternative for integrative analysis of multi-modal SRT data (https://github.com/xkmaxidian/MuCST).
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A contrastive learning approach to integrate spatial transcriptomics and histological images
    Lin, Yu
    Liang, Yanchun
    Wang, Duolin
    Chang, Yuzhou
    Ma, Qin
    Wang, Yan
    He, Fei
    Xu, Dong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 1786 - 1795
  • [2] Deconvolution of spatial transcriptomics data via graph contrastive learning and partial least square regression
    Mo, Yuanyuan
    Liu, Juan
    Zhang, Lihua
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)
  • [3] Contrastive Masked Graph Autoencoders for Spatial Transcriptomics Data Analysis
    Fang, Donghai
    Gao, Yichen
    Wang, Zhaoying
    Zhu, Fangfang
    Min, Wenwen
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT I, ISBRA 2024, 2024, 14954 : 76 - 88
  • [4] Deep learning in integrating spatial transcriptomics with other modalities
    Luo, Jiajian
    Fu, Jiye
    Lu, Zuhong
    Tu, Jing
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)
  • [5] Integrating contrastive learning with dynamic models for reinforcement learning from images
    You, Bang
    Arenz, Oleg
    Chen, Youping
    Peters, Jan
    NEUROCOMPUTING, 2022, 476 : 102 - 114
  • [6] Identifying spatial domain by adapting transcriptomics with histology through contrastive learning
    Zeng, Yuansong
    Yin, Rui
    Luo, Mai
    Chen, Jianing
    Pan, Zixiang
    Lu, Yutong
    Yu, Weijiang
    Yang, Yuedong
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (02)
  • [7] Assembling spatial clustering framework for heterogeneous spatial transcriptomics data with GRAPHDeep
    Liu, Teng
    Fang, Zhaoyu
    Li, Xin
    Zhang, Lining
    Cao, Dong-Sheng
    Li, Min
    Yin, Mingzhu
    BIOINFORMATICS, 2024, 40 (01)
  • [8] Representing Spatial Data with Graph Contrastive Learning
    Fang, Lanting
    Kou, Ze
    Yang, Yulian
    Li, Tao
    REMOTE SENSING, 2023, 15 (04)
  • [9] METI: Deep profiling of tumor ecosystems by integrating cell morphology and spatial transcriptomics
    Jiang, Jiahui
    Liu, Yunhe
    Qin, Jiangjiang
    Wu, Jingjing
    Chen, Jianfeng
    Pizzi, Melissa
    Segura, Rossana
    Yamashita, Kohei
    Xu, Zhiyuan
    Pei, Guangsheng
    Cho, Kyung Serk
    Chu, Yanshuo
    Sinjab, Ansam
    Peng, Fuduan
    Han, Guangchun
    Wang, Ruiping
    Yan, Xinmiao
    Dai, Enyu
    Li, Mingyao
    Futreal, Andrew
    Maitra, Anirban
    Lazar, Alexander
    Cheng, Xiangdong
    Kadara, Humam
    Ajani, Jaffer
    Jazaeri, Amir
    Hu, Jian
    Wang, Linghua
    Gao, Jianjun
    CANCER RESEARCH, 2024, 84 (06)
  • [10] METI: deep profiling of tumor ecosystems by integrating cell morphology and spatial transcriptomics
    Jiang, Jiahui
    Liu, Yunhe
    Qin, Jiangjiang
    Chen, Jianfeng
    Wu, Jingjing
    Pizzi, Melissa P.
    Lazcano, Rossana
    Yamashita, Kohei
    Xu, Zhiyuan
    Pei, Guangsheng
    Cho, Kyung Serk
    Chu, Yanshuo
    Sinjab, Ansam
    Peng, Fuduan
    Yan, Xinmiao
    Han, Guangchun
    Wang, Ruiping
    Dai, Enyu
    Dai, Yibo
    Czerniak, Bogdan A.
    Futreal, Andrew
    Maitra, Anirban
    Lazar, Alexander
    Kadara, Humam
    Jazaeri, Amir A.
    Cheng, Xiangdong
    Ajani, Jaffer
    Gao, Jianjun
    Hu, Jian
    Wang, Linghua
    NATURE COMMUNICATIONS, 2024, 15 (01)