Deep learning empowered channel estimation in massive MIMO: unveiling the efficiency of hybrid deep learning architecture

被引:0
|
作者
Amish Ranjan [1 ]
Bikash Chandra Sahana [1 ]
机构
[1] National Institute of Technology,Department of Electronics and Communication Engineering
关键词
Massive MIMO; Beamforming; Deep learning; GRU; LSTM; Spectral efficiency;
D O I
10.1007/s12652-025-04952-w
中图分类号
学科分类号
摘要
Massive Multiple-Input Multiple-Output (MIMO) technology has changed the way wireless connectivity works and promises to make spectral efficiency better than ever before. Traditional methods, like Maximum Ratio Transmission (MRT) beamforming, have problems with big antenna arrays, channel estimation errors, and wireless channel variability. To get rid of these problems, the proposed model presents a novel deep learning method that combines Gated Recurrent Units (GRU) and Long Short-Term Memory (LSTM) networks. It uses both temporal and spatial relationships in channel data to make channel estimation and beamforming better in massive MIMO systems. The comparison results show the efficiency of the proposed method with respect to state-of-the art methods for channel estimation in massive MIMO. At the beginning of the study, massive MIMO technology is thoroughly evaluated, with a focus on both its benefits and drawbacks. We discuss the theoretical foundations of MRT beamforming and its limitations when dealing with large antenna arrays. To tackle these challenges, we describe a novel deep learning architecture that leverages the temporal and spatial relationships seen in the channel data through the use of GRU and LSTM layers. A comprehensive method including model designs, training schedules, metrics for performance assessment, and data generation is explained. We perform comprehensive controlled simulations that allow us to compare the GRU + LSTM approach and MRT’s spectrum efficiency. The results offer exciting new insights. This research not only shows improved spectral efficiency and robustness to channel variations, but it also elucidates the trade-offs between deep learning and conventional methods in wireless communication systems, indicating that deep learning could be essential to achieving the full benefits of Massive MIMO.
引用
收藏
页码:375 / 390
页数:15
相关论文
共 50 条
  • [21] Deep Learning-Based Downlink Channel Estimation for FDD Massive MIMO Systems
    Xiang, Bingtong
    Hu, Die
    Wu, Jun
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (04) : 699 - 702
  • [22] Deep Learning for Channel Sensing and Hybrid Precoding in TDD Massive MIMO OFDM Systems
    Attiah, Kareem M.
    Sohrabi, Foad
    Yu, Wei
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (12) : 10839 - 10853
  • [23] Deep Learning Approach to Channel Sensing and Hybrid Precoding for TDD Massive MIMO Systems
    Attiah, Kareem M.
    Sohrabi, Foad
    Yu, Wei
    2020 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2020,
  • [24] Deep Learning for Beamspace Channel Estimation in Millimeter-Wave Massive MIMO Systems
    Wei, Xiuhong
    Hu, Chen
    Dai, Linglong
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (01) : 182 - 193
  • [25] Channel Estimation for Cell-Free mmWave Massive MIMO Through Deep Learning
    Jin, Yu
    Zhang, Jiayi
    Jin, Shi
    Ai, Bo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (10) : 10325 - 10329
  • [26] Deep Learning-Based Channel Estimation for Massive MIMO Systems with Pilot Contamination
    Hirose H.
    Ohtsuki T.
    Gui G.
    IEEE Open Journal of Vehicular Technology, 2021, 2 : 67 - 77
  • [27] DEEP LEARNING AT THE EDGE FOR CHANNEL ESTIMATION IN BEYOND-5G MASSIVE MIMO
    Belgiovine, Mauro
    Sankhe, Kunal
    Bocanegra, Carlos
    Roy, Debashri
    Chowdhury, Kaushik R.
    IEEE WIRELESS COMMUNICATIONS, 2021, 28 (02) : 19 - 25
  • [28] An online deep learning based channel estimation method for mmWave massive MIMO systems
    Bai, XuDong
    Peng, Qi
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [29] Deep Learning-Based Beamspace Channel Estimation in mmWave Massive MIMO Systems
    Zhang, Yinghui
    Mu, Yifan
    Liu, Yang
    Zhang, Tiankui
    Qian, Yi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (12) : 2212 - 2215
  • [30] Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems
    He, Hengtao
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) : 852 - 855