Synergizing quantum techniques with machine learning for advancing drug discovery challenge

被引:0
|
作者
Liang, Zhiding [1 ]
He, Zichang [2 ]
Sun, Yue [2 ]
Herman, Dylan [2 ]
Jiao, Qingyue [1 ]
Zhu, Yanzhang [3 ]
Jiang, Weiwen [4 ]
Xu, Xiaowei [5 ]
Wu, Di [3 ]
Pistoia, Marco [2 ]
Shi, Yiyu [1 ]
机构
[1] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[2] JPMorgan Chase, Global Technol Appl Res, New York, NY 10017 USA
[3] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA
[4] George Mason Univ, Dept Elect & Comp Engn, Fairfax, VA 22030 USA
[5] South Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Guangdong Prov Key Lab South China Struct Heart Di, Guangzhou 510080, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
D O I
10.1038/s41598-024-82576-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Quantum Computing for Drug Discovery Challenge, held at the 42nd International Conference on Computer-Aided Design (ICCAD) in 2023, was a multi-month, research-intensive competition. Over 70 teams from more than 65 organizations from 12 different countries registered, focusing on the use of quantum computing for drug discovery. The challenge centered on designing algorithms to accurately estimate the ground state energy of molecules, specifically OH+, using quantum computing techniques. Participants utilized the IBM Qiskit platform within the constraints of the Noisy Intermediate Scale Quantum (NISQ) era, characterized by noise and limited quantum computing resources. The contest emphasized the importance of accurate estimation, efficient use of quantum resources, and the integration of machine learning techniques. This competition highlighted the potential of hybrid classical-quantum frameworks and machine learning in advancing quantum computing for practical applications, particularly in drug discovery.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Machine Learning in Drug Discovery: A Review
    Dara, Suresh
    Dhamercherla, Swetha
    Jadav, Surender Singh
    Babu, C. H. Madhu
    Ahsan, Mohamed Jawed
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (03) : 1947 - 1999
  • [22] Machine Learning in Drug Discovery and Development
    Wale, Nikil
    DRUG DEVELOPMENT RESEARCH, 2011, 72 (01) : 112 - 119
  • [23] Machine Learning in Drug Discovery: A Review
    Suresh Dara
    Swetha Dhamercherla
    Surender Singh Jadav
    CH Madhu Babu
    Mohamed Jawed Ahsan
    Artificial Intelligence Review, 2022, 55 : 1947 - 1999
  • [24] Machine Learning Methods in Drug Discovery
    Patel, Lauv
    Shukla, Tripti
    Huang, Xiuzhen
    Ussery, David W.
    Wang, Shanzhi
    MOLECULES, 2020, 25 (22):
  • [25] Advancing drug discovery
    Walz, Martha
    R&D MAGAZINE, 2007, 49 (05): : 36 - 37
  • [26] Advancing Anticancer Drug Discovery: Leveraging Metabolomics and Machine Learning for Mode of Action Prediction by Pattern Recognition
    Saoud, Mohamad
    Grau, Jan
    Rennert, Robert
    Mueller, Thomas
    Yousefi, Mohammad
    Davari, Mehdi D.
    Hause, Bettina
    Csuk, Rene
    Rashan, Luay
    Grosse, Ivo
    Tissier, Alain
    Wessjohann, Ludger A.
    Balcke, Gerd U.
    ADVANCED SCIENCE, 2024, 11 (47)
  • [27] Leveraging Artificial Intelligence and Machine Learning for Characterizing Protein Corona, Nanobiological Interactions, and Advancing Drug Discovery
    Kopac, Turkan
    BIOENGINEERING-BASEL, 2025, 12 (03):
  • [28] Advancing Psychiatric Biomarker Discovery Through Multimodal Machine Learning
    Schwarz, Emanuel
    BIOLOGICAL PSYCHIATRY, 2022, 91 (06) : 524 - 525
  • [29] Advancing classical and quantum communication systems with machine learning
    Zibar, D.
    Moura, U. C.
    Chin, H. M.
    Brusin, A. M. Rosa
    Jain, N.
    Da Ros, F.
    Kleis, S.
    Schaeffer, C.
    Gehring, T.
    Andersen, U. L.
    Carena, A.
    2020 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2020,
  • [30] Machine Learning Techniques and Drug Design
    Gertrudes, J. C.
    Maltarollo, V. G.
    Silva, R. A.
    Oliveira, P. R.
    Honorio, K. M.
    da Silva, A. B. F.
    CURRENT MEDICINAL CHEMISTRY, 2012, 19 (25) : 4289 - 4297