Synergizing quantum techniques with machine learning for advancing drug discovery challenge

被引:0
|
作者
Liang, Zhiding [1 ]
He, Zichang [2 ]
Sun, Yue [2 ]
Herman, Dylan [2 ]
Jiao, Qingyue [1 ]
Zhu, Yanzhang [3 ]
Jiang, Weiwen [4 ]
Xu, Xiaowei [5 ]
Wu, Di [3 ]
Pistoia, Marco [2 ]
Shi, Yiyu [1 ]
机构
[1] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[2] JPMorgan Chase, Global Technol Appl Res, New York, NY 10017 USA
[3] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA
[4] George Mason Univ, Dept Elect & Comp Engn, Fairfax, VA 22030 USA
[5] South Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Guangdong Prov Key Lab South China Struct Heart Di, Guangzhou 510080, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
D O I
10.1038/s41598-024-82576-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Quantum Computing for Drug Discovery Challenge, held at the 42nd International Conference on Computer-Aided Design (ICCAD) in 2023, was a multi-month, research-intensive competition. Over 70 teams from more than 65 organizations from 12 different countries registered, focusing on the use of quantum computing for drug discovery. The challenge centered on designing algorithms to accurately estimate the ground state energy of molecules, specifically OH+, using quantum computing techniques. Participants utilized the IBM Qiskit platform within the constraints of the Noisy Intermediate Scale Quantum (NISQ) era, characterized by noise and limited quantum computing resources. The contest emphasized the importance of accurate estimation, efficient use of quantum resources, and the integration of machine learning techniques. This competition highlighted the potential of hybrid classical-quantum frameworks and machine learning in advancing quantum computing for practical applications, particularly in drug discovery.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Survey of Machine Learning Techniques in Drug Discovery
    Stephenson, Natalie
    Shane, Emily
    Chase, Jessica
    Rowland, Jason
    Ries, David
    Justice, Nicola
    Zhang, Jie
    Chan, Leong
    Cao, Renzhi
    CURRENT DRUG METABOLISM, 2019, 20 (03) : 185 - 193
  • [2] Application of Machine Learning Techniques for Drug Discovery
    de Azevedo Jr, Walter Filgueira
    CURRENT MEDICINAL CHEMISTRY, 2021, 28 (38) : 7805 - 7807
  • [3] Advanced machine-learning techniques in drug discovery
    Elbadawi, Moe
    Gaisford, Simon
    Basit, Abdul W.
    DRUG DISCOVERY TODAY, 2020, 26 (03) : 769 - 777
  • [4] Quantum Machine Learning Algorithms for Drug Discovery Applications
    Batra, Kushal
    Zorn, Kimberley M.
    Foil, Daniel H.
    Minerali, Eni
    Gawriljuk, Victor O.
    Lane, Thomas R.
    Ekins, Sean
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (06) : 2641 - 2647
  • [5] Advancing Healthcare: Synergizing Biosensors and Machine Learning for Early Cancer Diagnosis
    Kokabi, Mahtab
    Tahir, Muhammad Nabeel
    Singh, Darshan
    Javanmard, Mehdi
    BIOSENSORS-BASEL, 2023, 13 (09):
  • [6] Machine-Learning Techniques Applied to Antibacterial Drug Discovery
    Durrant, Jacob D.
    Amaro, Rommie E.
    CHEMICAL BIOLOGY & DRUG DESIGN, 2015, 85 (01) : 14 - 21
  • [7] Unlocking the Potential of Quantum Machine Learning to Advance Drug Discovery
    Avramouli, Maria
    Savvas, Ilias K. K.
    Vasilaki, Anna
    Garani, Georgia
    ELECTRONICS, 2023, 12 (11)
  • [8] Invited: Drug Discovery Approaches using Quantum Machine Learning
    Li, Junde
    Alam, Mahabubul
    Sha, Congzhou M.
    Wang, Jian
    Dokholyan, Nikolay, V
    Ghosh, Swaroop
    2021 58TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2021, : 1356 - 1359
  • [9] Advances in the application of machine learning techniques in drug discovery, design and development
    Barrett, S. J.
    Langdon, W. B.
    APPLICATIONS OF SOFT COMPUTING: RECENT TRENDS, 2006, : 99 - +
  • [10] Machine Learning in Drug Discovery
    Hochreiter, Sepp
    Klambauer, Guenter
    Rarey, Matthias
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (09) : 1723 - 1724