Mechanism of acclimation to chronic intermittent hypoxia in the gills of largemouth bass (Micropterus salmoides)

被引:0
|
作者
Liu, Qiao
Wang, Hong
Ge, Jiayu
Guo, Lipeng [1 ]
Tahir, Rabia [1 ]
Luo, Jie [1 ]
He, Kuo [1 ]
Yan, Haoxiao [1 ]
Zhang, Xin [1 ]
Cao, Quanquan [1 ]
Cheng, Zhang [2 ]
Zhao, Liulan [1 ]
Yang, Song [1 ]
机构
[1] Sichuan Agr Univ, Coll Anim Sci & Technol, Chengdu 611130, Sichuan, Peoples R China
[2] Sichuan Agr Univ, Coll Environm, Chengdu 611130, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypoxia; Largemouth bass; Gills; Glycolysis; Calcium signaling; Immune response; NILE TILAPIA; FISH; MITOCHONDRIA; CELL; STRATEGIES; MORPHOLOGY; TOLERANCE; RESPONSES; TELEOST; ISOFORM;
D O I
10.1007/s10695-024-01419-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The acclimation response of fish gills to chronic intermittent hypoxia (CIH) is an important aspect to understand, as anthropogenically induced hypoxia in water bodies has been a stressor for fish for many years and is expected to persist in the future. In order to investigate the acclimation response of fish gills to CIH stress, we conducted a study using largemouth bass (Micropterus salmoides) exposed to intermittent hypoxia (dissolved oxygen level, 2.0 mg<middle dot>L-1) for either 1 or 3 h per day, over a period of 8 weeks. Our findings indicate that exposure to CIH induced remodeling of the gills and an increase in gill surface area. This remodeling of the gills may be attributed to changes in cell growth and proliferation, which are influenced by the activation of the MAPK signaling pathway. We also observed significant upregulation of genes related to glycolysis (fba, pgam1, pepck, atp-pfk, pfk-2, g6pi, gapd-1, and pk), while genes associated with cholesterol synthesis (3 beta-hsd, cyp51, dsdr- x 1, dsdr, and dhcr7) were downregulated following CIH exposure. Furthermore, we observed the presence of elongated megamitochondria in mitochondria-rich cells within the gills of fish exposed to hypoxia. Additionally, numerous genes involved in calcium signaling pathways were upregulated in the gills of largemouth bass, suggesting an enhanced sensitivity of gills to environmental cues in hypoxia conditions. However, the expression levels of certain genes related to innate and adaptive immune responses were inhibited following CIH exposure. Moreover, the number of mucous cells decreased after CIH exposure. This may have made the gills more susceptible to infection by pathogens, although it facilitated oxygen uptake. These findings highlight the potential vulnerability of gills to pathogenic organisms in the presence of CIH. Overall, our study contributes to a better understanding of how fish acclimate to CIH.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] Survival of Foul-Hooked Largemouth Bass (Micropterus salmoides)
    Pope, Kevin L.
    Wilde, Gene R.
    JOURNAL OF FRESHWATER ECOLOGY, 2010, 25 (01) : 135 - 139
  • [32] The role of TNF-α in the phagocytosis of largemouth bass (Micropterus salmoides)
    Yang, Shun
    Ma, Yuanxin
    Lou, Xiaocong
    Zhou, Zhewei
    Zhang, Huimin
    Yi, Shunfa
    Cheng, Yan
    Qian, Shichao
    Huang, Mengmeng
    Fei, Hui
    FISH & SHELLFISH IMMUNOLOGY, 2023, 132
  • [33] The dynamics of aerial and aquatic feeding in largemouth bass (Micropterus salmoides)
    Axlid, Erik
    Higham, Tim
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2024, 64 : S28 - S28
  • [34] INDUCED SPAWNING OF LARGEMOUTH BASS [MICROPTERUS-SALMOIDES (LACEPEDE)]
    CARLSON, AR
    TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY, 1973, 102 (02) : 442 - 444
  • [35] HOOKING MORTALITY OF JUVENILE LARGEMOUTH BASS, MICROPTERUS-SALMOIDES
    PELZMAN, RJ
    CALIFORNIA FISH AND GAME, 1978, 64 (03): : 185 - 188
  • [36] Maternally transferred mercury in wild largemouth bass, Micropterus salmoides
    Sackett, Dana K.
    Aday, D. Derek
    Rice, James A.
    Cope, W. Gregory
    ENVIRONMENTAL POLLUTION, 2013, 178 : 493 - 497
  • [37] Retrospect of fishmeal substitution in largemouth bass (Micropterus salmoides): a review
    Liu, Yuanyi
    Pu, Changchang
    Pei, Zhuo
    Zhang, Weichuan
    Wei, Zihui
    Chen, Hongyu
    Huang, Yong
    FISH PHYSIOLOGY AND BIOCHEMISTRY, 2025, 51 (01) : 1 - 17
  • [38] Effects of Astaxanthin on Ovarian Development of Largemouth Bass (Micropterus salmoides)
    Tao, Mingwei
    Zhou, Hangxian
    Wei, Jie
    Xu, Qiyou
    AQUACULTURE NUTRITION, 2024, 2024
  • [39] Isolation and characterization of 40 SNP in largemouth bass (Micropterus salmoides)
    Jiajia Fan
    Junjie Bai
    Dongmei Ma
    Conservation Genetics Resources, 2020, 12 : 57 - 60
  • [40] SCALING THE FEEDING MECHANISM OF LARGEMOUTH BASS (MICROPTERUS-SALMOIDES) - KINEMATICS OF PREY CAPTURE
    RICHARD, BA
    WAINWRIGHT, PC
    JOURNAL OF EXPERIMENTAL BIOLOGY, 1995, 198 (02): : 419 - 433