Exponential Stability and Design of Sensor Feedback Amplifiers for Fast Stabilization of Magnetizable Piezoelectric Beam Equations

被引:0
|
作者
Ozer, Ahmet Ozkan [1 ]
Aydn, Ahmet Kaan [2 ]
Emran, Rafi [3 ]
机构
[1] Western Kentucky Univ, Dept Math, Bowling Green, KY 42101 USA
[2] Univ Maryland Baltimore Cty, Dept Math, Baltimore, MD 21250 USA
[3] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
Feedback amplifiers; Stability; Control theory; Mathematical models; Oscillators; Closed loop systems; State feedback; Distributed parameter systems; feedback stabilization; intelligent materials; Lyapunov approach; maximal decay rate; REDUCTION;
D O I
10.1109/TAC.2024.3462917
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The dynamic partial differential equation model governing longitudinal oscillations in magnetizable piezoelectric beams exhibits exponentially stable solutions when subjected to two boundary state feedback controllers. An analytically established exponential decay rate by the Lyapunov approach ensures the stabilization of the system to equilibrium, although the actual decay rate could potentially be improved. The decay rate of the closed-loop system is highly sensitive to the choice of material parameters and the design of the state feedback amplifiers. This article focuses on investigating the design of state feedback amplifiers to achieve a maximal exponential decay rate, which is essential for effectively suppressing oscillations in these beams. Through this design process, we explicitly determine the safe intervals of feedback amplifiers that ensure the theoretically found maximal decay rate, with the potential for even better rates. Our numerical results reaffirm the robustness of the decay rate within the chosen range of feedback amplifiers, while deviations from this range significantly impact the decay rate. To underscore the validity of our results, we present various numerical experiments.
引用
收藏
页码:1374 / 1379
页数:6
相关论文
共 50 条
  • [1] STABILIZATION OF A RAYLEIGH BEAM WITH COLLOCATED PIEZOELECTRIC SENSOR/ACTUATOR
    Bai, Yubo
    Prieur, Christophe
    Wang, Zhiqiang
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (01): : 67 - 97
  • [2] Exponential Stability of Laminated Beam with Constant Delay Feedback
    Mpungu, Kassimu
    Apalara, Tijani A.
    MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (04) : 566 - 581
  • [3] EXPONENTIAL STABILITY FOR A PIEZOELECTRIC BEAM WITH A MAGNETIC EFFECT AND PAST HISTORY
    Dos Santos, Manoel J.
    Fortes, Joao C. P.
    Cardoso, Marcos L.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (10): : 5487 - 5501
  • [4] Boundary feedback exponential stabilization of a Timoshenko beam with both ends free
    Xu, GQ
    INTERNATIONAL JOURNAL OF CONTROL, 2005, 78 (04) : 286 - 297
  • [5] Design and simulation of a piezoelectric sensor with applications in image stabilization
    Corman, Ramona
    Nedelcu, Oana
    Dobrescu, Dragos
    2016 39TH INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS), 2016, : 85 - 88
  • [6] Exponential stabilization of a smart piezoelectric composite beam with only one boundary controller
    Ozer, Ahmet Ozkan
    IFAC PAPERSONLINE, 2018, 51 (03): : 80 - 85
  • [7] Boundary feedback stabilization of a novel bilinear and extensible piezoelectric beam model
    S. El Alaoui
    A. Ö. Özer
    M. Ouzahra
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [8] Boundary feedback stabilization of a novel bilinear and extensible piezoelectric beam model
    El Alaoui, S.
    Ozer, A. O.
    Ouzahra, M.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [9] Exponential stabilization of fully dynamic and electrostatic piezoelectric beams with delayed distributed damping feedback
    A. J. A. Ramos
    A. Ö. Özer
    M. M. Freitas
    D. S. Almeida Júnior
    J. D. Martins
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [10] Exponential stabilization of fully dynamic and electrostatic piezoelectric beams with delayed distributed damping feedback
    Ramos, A. J. A.
    Ozer, A. O.
    Freitas, M. M.
    Almeida Junior, D. S.
    Martins, J. D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):