Exponential stabilization of fully dynamic and electrostatic piezoelectric beams with delayed distributed damping feedback

被引:0
|
作者
A. J. A. Ramos
A. Ö. Özer
M. M. Freitas
D. S. Almeida Júnior
J. D. Martins
机构
[1] Federal University of Pará,Faculty of Mathematics
[2] Western Kentucky University,Department of Mathematics
[3] Federal University of Pará,PhD Program in Mathematics
关键词
Fully dynamic; Electrostatic; Maxwell’s equations; Piezoelectric beam; Exponential stability; Time delayed control; Distributed feedback control; 35Q60; 35Q93; 74F15; 35Q74; 93B52;
D O I
暂无
中图分类号
学科分类号
摘要
Fully dynamic system of equations for a single piezoelectric beam strongly couples the mechanical (longitudinal) vibrations with the total charge distribution across the beam. Unlike the electrostatic (or quasi-static) assumption of Maxwell’s equations, the hyperbolic-type charge equations have been recently shown to affect the stabilizability of the high-frequency vibrational modes if one considers only a single boundary controller; voltage at the electrodes of the beam. In this paper, we consider viscously damped beam equations and a single distributed state feedback controller with a delay. The effect of the delay in the feedback is investigated for the overall exponential stabilizability dynamics of the piezoelectric beam equations. First, the equations of motion in the state-space formulation are shown to be well-posed by the semigroup theory. Next, an energy approach by the Lyapunov theory is utilized to prove that the exponential stability is retained only if the coefficient of the delayed feedback is strictly less than the coefficient of the state feedback. Finally, the results are compared to the ones of the electrostatic case.
引用
收藏
相关论文
共 50 条
  • [1] Exponential stabilization of fully dynamic and electrostatic piezoelectric beams with delayed distributed damping feedback
    Ramos, A. J. A.
    Ozer, A. O.
    Freitas, M. M.
    Almeida Junior, D. S.
    Martins, J. D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [2] Exponential stabilization of laminated beams with structural damping and boundary feedback controls
    Wang, JM
    Xu, GQ
    Yung, SP
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (05) : 1575 - 1597
  • [3] Global well-posedness and general energy decay of solutions for fully dynamic and electrostatic piezoelectric beams with a viscoelastic damping
    Messaoudi, Hassan
    Douib, Madani
    Zitouni, Salah
    FILOMAT, 2024, 38 (27) : 9475 - 9492
  • [4] Exponential stability results for the boundary-controlled fully-dynamic piezoelectric beams with various distributed and boundary delays
    Feng, Baowei
    Ozer, Ahmet Ozkan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 508 (01)
  • [5] Global well-posedness and exponential decay of fully dynamic and electrostatic or quasi-static piezoelectric beams subject to a neutral delay
    Sami Loucif
    Rafik Guefaifia
    Salah Zitouni
    Houssem Eddine Khochemane
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [6] Global well-posedness and exponential decay of fully dynamic and electrostatic or quasi-static piezoelectric beams subject to a neutral delay
    Loucif, Sami
    Guefaifia, Rafik
    Zitouni, Salah
    Khochemane, Houssem Eddine
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (03):
  • [7] Exponential stabilization of piezoelectric beams with magnetic effect and second sound
    Ramos, A. J. A.
    Nonato, C. A. S.
    Campelo, A. D. S.
    Freitas, M. M.
    Silva, D. W. G.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05):
  • [8] Exponential stabilization of piezoelectric beams with magnetic effect and second sound
    A. J. A. Ramos
    C. A. S. Nonato
    A. D. S. Campelo
    M. M. Freitas
    D. W. G. Silva
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [9] Exponential synchronization and stabilization of delayed feedback hyperchaotic financial system
    Rao, Ruofeng
    Zhu, Quanxin
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [10] Exponential synchronization and stabilization of delayed feedback hyperchaotic financial system
    Ruofeng Rao
    Quanxin Zhu
    Advances in Difference Equations, 2021