Intelligent Fault Detection Scheme for Rolling Bearing Based on Generative Adversarial Network and AutoEncoders Using Convolutional Neural Network

被引:0
|
作者
Maan Singh Rathore [1 ]
S. P. Harsha [1 ]
机构
[1] Indian Institute of Technology Roorkee,Department of Mechanical and Industrial Engineering
关键词
Deep convolutional neural network; Normalized cross-correlation; Stacked autoencoder; Generative adversarial network; ROC; AUC (area under Curve);
D O I
10.1007/s42417-024-01580-0
中图分类号
学科分类号
摘要
Fault detection in early operational stages of rolling bearing is crucial for reliable and safe functioning of rotating machinery. Implementation of intelligent fault detection techniques involving deep learning methods enable automatic feature extraction and selection from raw vibration data provides accurate results. The shortage of enough historical data limits the application of deep learning. Therefore, to solve this problem, in this paper data augmentation method is implemented to generate new data that having greater similitude with the real data for better training of deep learning model for fault detection. For this purpose, WGAN (Wasserstein generative adversarial network) is implemented as imbalanced data augmentation method. Also SAE (stacked autoencoder) is implemented to obtain the latent representation of raw vibration data which is used as noise vector to train WGAN. This has greatly improved the quality of data generation from WGAN. The quality assessment of generated samples is quantified by implementing metrics such as KLD (Kullback-Leibler divergence) and NCC (normalized cross-correlation). The comparison with conventional data generation methods such as VAE, and GAN proves the superior quality of data generation by SAE-WGAN. Test rig experiments are used to gather the vibration data, and deep convolutional neural networks are used to classify the faults (DCNN). The ROC (receiver operating characteristic) curve and performance evaluation metrics like precision, recall, and F1-score amply demonstrated the excellent discriminative power of the suggested methodology for fault detection. Hence the proposed work successfully implemented as condition monitoring tool for early fault detection in rotating machinery.
引用
下载
收藏
页码:8979 / 8991
页数:12
相关论文
共 50 条
  • [1] Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network
    Gong W.-F.
    Chen H.
    Zhang Z.-H.
    Zhang M.-L.
    Guan C.
    Wang X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (02): : 400 - 413
  • [2] A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset
    Tang, Hongtao
    Gao, Shengbo
    Wang, Lei
    Li, Xixing
    Li, Bing
    Pang, Shibao
    SENSORS, 2021, 21 (20)
  • [3] Intelligent Diagnosis of Rolling Bearing Fault Based on Improved Convolutional Neural Network and LightGBM
    Xu, Yanwei
    Cai, Weiwei
    Wang, Liuyang
    Xie, Tancheng
    SHOCK AND VIBRATION, 2021, 2021
  • [4] Wasserstein Generative Adversarial Network and Convolutional Neural Network (WG-CNN) for Bearing Fault Diagnosis
    Yin, Hang
    Li, Zhongzhi
    Zuo, Jiankai
    Liu, Hedan
    Yang, Kang
    Li, Fei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [5] Deep Convolutional Generative Adversarial Network and Convolutional Neural Network for Smoke Detection
    Yin, Hang
    Wei, Yurong
    Liu, Hedan
    Liu, Shuangyin
    Liu, Chuanyun
    Gao, Yacui
    COMPLEXITY, 2020, 2020
  • [6] Deep Convolutional Generative Adversarial Network and Convolutional Neural Network for Smoke Detection
    Yin, Hang
    Wei, Yurong
    Liu, Hedan
    Liu, Shuangyin
    Liu, Chuanyun
    Gao, Yacui
    Liu, Shuangyin (hdlsyxlq@126.com), 1600, Hindawi Limited (2020):
  • [7] Intelligent Fault Diagnosis of Rolling Element Bearing Based on Convolutional Neural Network and Frequency Spectrograms
    Liang, Pengfei
    Deng, Chao
    Wu, Jun
    Yang, Zhixin
    Zhu, Jinxuan
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [8] A Fault Diagnosis Method of Rolling Bearing Based on Convolutional Neural Network
    Zhang, Bangcheng
    Gao, Shuo
    Hu, Guanyu
    Gao, Zhi
    Zhao, Yadong
    Du, Jianzhuang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4709 - 4713
  • [9] Fault diagnosis of rolling bearing based on an improved convolutional neural network using SFLA
    Li Y.
    Ma J.
    Jiang L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (24): : 187 - 193
  • [10] A fault diagnosis method based on Auxiliary Classifier Generative Adversarial Network for rolling bearing
    Wu, Chunming
    Zeng, Zhou
    PLOS ONE, 2021, 16 (03):