Translate Your Gibberish: Black-Box Adversarial Attack on Machine Translation Systems

被引:0
|
作者
A. Chertkov [1 ]
O. Tsymboi [2 ]
M. Pautov [3 ]
I. Oseledets [1 ]
机构
[1] Skolkovo Institute of Science and Technology,Institute of Numerical Mathematics
[2] Moscow Institute of Physics and Technology,undefined
[3] Russian Academy of Sciences,undefined
[4] AIRI,undefined
关键词
D O I
10.1007/s10958-024-07428-y
中图分类号
学科分类号
摘要
Neural networks are deployed widely in natural language processing tasks on the industrial scale, and perhaps most often they are used as compounds of automatic machine translation systems. In this work, we present a simple approach to fool state of the art machine translation tools in the task of translation from Russian to English and vice versa. Using a novel black-box gradient-free tensor-based optimizer, we show that many online translation tools, such as Google, DeepL, and Yandex, may both produce wrong or offensive translations for nonsensical adversarial input queries and refuse to translate seemingly benign input phrases. This vulnerability may interfere with understanding a new language and simply worsen the user’s experience while using machine translation systems, and, hence, additional improvements of these tools are required to establish better translation.
引用
收藏
页码:221 / 233
页数:12
相关论文
共 50 条
  • [21] Black-Box Adversarial Attack on Time Series Classification
    Ding, Daizong
    Zhang, Mi
    Feng, Fuli
    Huang, Yuanmin
    Jiang, Erling
    Yang, Min
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6, 2023, : 7358 - 7368
  • [22] A Targeted Attack on Black-Box Neural Machine Translation with Parallel Data Poisoning
    Xu, Chang
    Wang, Jun
    Tang, Yuqing
    Guzman, Francisco
    Rubinstein, Benjamin I. P.
    Cohn, Trevor
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 3638 - 3650
  • [23] Research Status of Black-Box Intelligent Adversarial Attack Algorithms
    Wei, Jian
    Song, Xiaoqing
    Wang, Qinzhao
    Computer Engineering and Applications, 2023, 59 (13) : 61 - 73
  • [24] HYBRID ADVERSARIAL SAMPLE CRAFTING FOR BLACK-BOX EVASION ATTACK
    Zheng, Juan
    He, Zhimin
    Lin, Zhe
    2017 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2017, : 236 - 242
  • [25] Black-box adversarial attacks on XSS attack detection model
    Wang, Qiuhua
    Yang, Hui
    Wu, Guohua
    Choo, Kim-Kwang Raymond
    Zhang, Zheng
    Miao, Gongxun
    Ren, Yizhi
    COMPUTERS & SECURITY, 2022, 113
  • [26] Optimized Gradient Boosting Black-Box Adversarial Attack Algorithm
    Liu, Mengting
    Ling, Jie
    Computer Engineering and Applications, 2023, 59 (18) : 260 - 267
  • [27] Evolutionary Multilabel Adversarial Examples: An Effective Black-Box Attack
    Kong L.
    Luo W.
    Zhang H.
    Liu Y.
    Shi Y.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (03): : 562 - 572
  • [28] Black-box Adversarial Attack on License Plate Recognition System
    Chen J.-Y.
    Shen S.-J.
    Su M.-M.
    Zheng H.-B.
    Xiong H.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (01): : 121 - 135
  • [29] Substitute Meta-Learning for Black-Box Adversarial Attack
    Hu, Cong
    Xu, Hao-Qi
    Wu, Xiao-Jun
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2472 - 2476
  • [30] Black-box Adversarial Attack and Defense on Graph Neural Networks
    Li, Haoyang
    Di, Shimin
    Li, Zijian
    Chen, Lei
    Cao, Jiannong
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1017 - 1030