Impact of climate change on hydrological fluxes in the Upper Bhagirathi River Basin, Uttarakhand

被引:0
|
作者
Shyam Sundar Bhardwaj [1 ]
Madan Kumar Jha [1 ]
Bhumika Uniyal [2 ]
机构
[1] Indian Institute of Technology Kharagpur,Agricultural and Food Engineering Department
[2] University of Bayreuth,Bayreuth Center of Ecology and Environmental Research (BayCEER)
关键词
Streamflow prediction; SWAT; Water balance; Climate change impacts; Bias correction; Shared Socioeconomic Pathways;
D O I
10.1007/s10661-025-13676-5
中图分类号
学科分类号
摘要
The Himalayan rivers are the major source of freshwater resources and have a tremendous potential for hydroelectric generation. However, assessing the water availability under climate change is challenging due to data scarcity, undulating topography, and complex climatic conditions. SWAT modeling investigates all potential consequences of variations in climate on the hydrological fluxes in the Upper Bhagirathi River Basin. Two global circulation models (GCMs) with three different climatic scenarios were employed. Quantile mapping has been used to correct the bias of GCM data. The developed model accurately simulated streamflow during calibration and validation at daily (NSE = 0.79 − 0.74, r = 0.89–0.87, and RMSE = 61.95 m3/s–79.75 m3/s) and monthly (NSE = 0.92 − 0.93, r = 0.96–0.97, and RMSE = 34.19 m3/s–37.39 m3/s) time steps. The analysis of the outcomes from MIROC6 and NorESM2-LM revealed that the rise in streamflow, surface runoff, lateral flow, and baseflow is more pronounced in MIROC6 across all three climatic scenarios. Under all scenarios, both MIROC6 and NorESM2-LM models show significant variations in snowfall and snowmelt patterns, with the area under snowfall reaching up to 51.65% for MIROC6 under SSP1-2.6 and snowmelt area peaking at 64.30% for MIROC6 under SSP2-4.5. This study’s findings will offer essential insights for policymakers, practitioners, and water resource managers in developing climate-resilient strategies for sustainable water management in Himalayan catchments.
引用
下载
收藏
相关论文
共 50 条
  • [1] Impact of climate change on hydrological droughts in the upper Namhan River basin, Korea
    Kwak, Jaewon
    Kim, Soojun
    Singh, Vijay P.
    Kim, Hung Soo
    Kim, Duckgil
    Hong, Seungjin
    Lee, Keonhaeng
    KSCE JOURNAL OF CIVIL ENGINEERING, 2015, 19 (02) : 376 - 384
  • [2] Impact of climate change on hydrological droughts in the upper Namhan River basin, Korea
    Jaewon Kwak
    Soojun Kim
    Vijay P. Singh
    Hung Soo Kim
    Duckgil Kim
    Seungjin Hong
    Keonhaeng Lee
    KSCE Journal of Civil Engineering, 2015, 19 : 376 - 384
  • [3] Impact of climate change on water availability in Bhagirathi River Basin, India
    Dimri T.
    Ahmad S.
    Sharif M.
    ISH Journal of Hydraulic Engineering, 2023, 29 (05): : 642 - 651
  • [4] Hydrological impacts of climate change in the upper reaches of the Yangtze River Basin
    Sun, Jialan
    Lei, Xiaohui
    Tian, Yu
    Liao, Weihong
    Wang, Yuhui
    QUATERNARY INTERNATIONAL, 2013, 304 : 62 - 74
  • [5] Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China
    Wen, Shanshan
    Su, Buda
    Wang, Yanjun
    Zhai, Jianqing
    Sun, Hemin
    Chen, Ziyan
    Huang, Jinlong
    Wang, Anqian
    Jiang, Tong
    CLIMATIC CHANGE, 2020, 163 (03) : 1207 - 1226
  • [6] Downscaling technique uncertainty in assessing hydrological impact of climate change in the Upper Beles River Basin, Ethiopia
    Ebrahim, Girma Yimer
    Jonoski, Andreja
    van Griensven, Ann
    Di Baldassarre, Giuliano
    HYDROLOGY RESEARCH, 2013, 44 (02): : 377 - 398
  • [7] Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China
    Shanshan Wen
    Buda Su
    Yanjun Wang
    Jianqing Zhai
    Hemin Sun
    Ziyan Chen
    Jinlong Huang
    Anqian Wang
    Tong Jiang
    Climatic Change, 2020, 163 : 1207 - 1226
  • [8] Climate change impact on hydrological processes in Lithuanian Nemunas river basin
    Kriauciuniene, Jurate
    Meilutyte-Barauskiene, Diana
    Rimkus, Egidijus
    Kazys, Justas
    Vincevicius, Ainis
    BALTICA, 2008, 21 (1-2): : 51 - 61
  • [9] Impact of climate change on hydrological extremes in the Yangtze River Basin, China
    Gu, Huanghe
    Yu, Zhongbo
    Wang, Guiling
    Wang, Jigan
    Ju, Qin
    Yang, Chuanguo
    Fan, Chuanhao
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2015, 29 (03) : 693 - 707
  • [10] Impact of climate change on hydrological extremes in the Yangtze River Basin, China
    Huanghe Gu
    Zhongbo Yu
    Guiling Wang
    Jigan Wang
    Qin Ju
    Chuanguo Yang
    Chuanhao Fan
    Stochastic Environmental Research and Risk Assessment, 2015, 29 : 693 - 707