Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China

被引:0
|
作者
Shanshan Wen
Buda Su
Yanjun Wang
Jianqing Zhai
Hemin Sun
Ziyan Chen
Jinlong Huang
Anqian Wang
Tong Jiang
机构
[1] Nanjing University of Information Science & Technology,Institute for Disaster Risk Management / School of Geographical Science
[2] National Climate Center,State Key Laboratory of Desert and Oasis Ecology
[3] China Meteorological Administration,undefined
[4] Xinjiang Institute of Ecology and Geography,undefined
[5] Chinese Academy of Sciences,undefined
[6] Beijing Meteorological Bureau,undefined
来源
Climatic Change | 2020年 / 163卷
关键词
Hydrological modeling; Discharge; Comprehensive model evaluation; Model weighting; Upper Yangtze River Basin;
D O I
暂无
中图分类号
学科分类号
摘要
Climate change has substantial impacts on regional hydrology in the major river basins. To figure out such latent hydrological impacts of changing climate, more reliable hydrological simulations are imperative. In this study, we evaluated the impacts of climate change on hydrological regime in the Upper Yangtze River Basin based on four downscaled and bias-corrected Global Climate Model outputs from Coupled Model Intercomparison Project Phase 5 under four Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) driving three hydrological models. Two model evaluation approaches were applied: simple and comprehensive. The comprehensive approach was used to evaluate models in the historical period, optimizing objective function at four gauges, and hydrological models were weighted for impact assessment based on their performance. In such a way, projected streamflow time series are obtained under different emission scenarios. Results show that the annual average discharge is projected to increase by 4.1–10.5% under the RCP scenarios at the end of twenty-first century relative to the reference period (1970–1999). Moreover, the high flow is projected to increase and the low flow to decrease indicating a higher probability of flood and drought occurrence in the basin. The severity of floods and droughts may increase. In comparison with the simple one-site model evaluation approach, the comprehensive method reveals that the anticipated extreme flow events would be less severe, and annual mean discharge slightly lower. The projected results imply that application of the comprehensive model evaluation approach could narrow the simulated spreads of projections significantly, and might provide more credible results.
引用
收藏
页码:1207 / 1226
页数:19
相关论文
共 50 条
  • [1] Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China
    Wen, Shanshan
    Su, Buda
    Wang, Yanjun
    Zhai, Jianqing
    Sun, Hemin
    Chen, Ziyan
    Huang, Jinlong
    Wang, Anqian
    Jiang, Tong
    [J]. CLIMATIC CHANGE, 2020, 163 (03) : 1207 - 1226
  • [2] Impact of climate change on hydrological extremes in the Yangtze River Basin, China
    Gu, Huanghe
    Yu, Zhongbo
    Wang, Guiling
    Wang, Jigan
    Ju, Qin
    Yang, Chuanguo
    Fan, Chuanhao
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2015, 29 (03) : 693 - 707
  • [3] Impact of climate change on hydrological extremes in the Yangtze River Basin, China
    Huanghe Gu
    Zhongbo Yu
    Guiling Wang
    Jigan Wang
    Qin Ju
    Chuanguo Yang
    Chuanhao Fan
    [J]. Stochastic Environmental Research and Risk Assessment, 2015, 29 : 693 - 707
  • [4] Hydrological impacts of climate change in the upper reaches of the Yangtze River Basin
    Sun, Jialan
    Lei, Xiaohui
    Tian, Yu
    Liao, Weihong
    Wang, Yuhui
    [J]. QUATERNARY INTERNATIONAL, 2013, 304 : 62 - 74
  • [5] Projected Effects of Climate Change on Future Hydrological Regimes in the Upper Yangtze River Basin, China
    Wang, Yuqian
    Yang, Xiaoli
    Zhang, Mengru
    Zhang, Linqi
    Yu, Xiaohan
    Ren, Liliang
    Liu, Yi
    Jiang, Shanhu
    Yuan, Fei
    [J]. ADVANCES IN METEOROLOGY, 2019, 2019
  • [6] Effect of projected climate change on the hydrological regime of the Yangtze River Basin, China
    Zhongbo Yu
    Huanghe Gu
    Jigan Wang
    Jun Xia
    Baohong Lu
    [J]. Stochastic Environmental Research and Risk Assessment, 2018, 32 : 1 - 16
  • [7] Effect of projected climate change on the hydrological regime of the Yangtze River Basin, China
    Yu, Zhongbo
    Gu, Huanghe
    Wang, Jigan
    Xia, Jun
    Lu, Baohong
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (01) : 1 - 16
  • [8] Hydrological responses of the upper reaches of Yangtze River to climate change
    Xu, D. L.
    Wu, Z. Y.
    Yang, Y.
    Hu, Z. Y.
    [J]. HYDRAULIC ENGINEERING III, 2015, : 93 - 100
  • [9] Impact of climate change on hydrological droughts in the upper Namhan River basin, Korea
    Kwak, Jaewon
    Kim, Soojun
    Singh, Vijay P.
    Kim, Hung Soo
    Kim, Duckgil
    Hong, Seungjin
    Lee, Keonhaeng
    [J]. KSCE JOURNAL OF CIVIL ENGINEERING, 2015, 19 (02) : 376 - 384
  • [10] Impact of climate change on hydrological droughts in the upper Namhan River basin, Korea
    Jaewon Kwak
    Soojun Kim
    Vijay P. Singh
    Hung Soo Kim
    Duckgil Kim
    Seungjin Hong
    Keonhaeng Lee
    [J]. KSCE Journal of Civil Engineering, 2015, 19 : 376 - 384