Jordan property for groups of bimeromorphic self-maps of complex manifolds with large Kodaira dimension

被引:0
|
作者
Loginov, Konstantin [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
[2] HSE Univ, Lab Algebra Geometry, Moscow, Russia
[3] Moscow Inst Phys & Technol, Lab AGHA, Moscow, Russia
关键词
D O I
10.1007/s00209-024-03643-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the image of the pluricanonical representation of a group of bimeromorphic automorphisms of a complex manifold has bounded finite subgroups. As a consequence, we show that the group of bimeromorphic automorphisms of an n-dimensional complex manifold whose Kodaira dimension is at least n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2$$\end{document}, satisfies the Jordan property.
引用
收藏
页数:14
相关论文
共 50 条