Cross-species real-time detection of trends in pupil size fluctuation

被引:0
|
作者
Kronemer, Sharif I. [1 ]
Gobo, Victoria E. [1 ]
Walsh, Catherine R. [1 ]
Teves, Joshua B. [1 ]
Burk, Diana C. [2 ]
Shahsavarani, Somayeh [1 ,3 ]
Gonzalez-Castillo, Javier [1 ]
Bandettini, Peter A. [1 ,4 ]
机构
[1] NIMH, Lab Brain & Cognit, Sect Funct Imaging Methods, Bldg 10,Room 1D80B,10 Ctr Dr MSC 1148, Bethesda, MD 20892 USA
[2] NIMH, Lab Neuropsychol, NIH, Bethesda, MD USA
[3] San Jose State Univ, Dept Audiol, San Jose, CA 95192 USA
[4] NIMH, Funct Magnet Resonance Imaging Core Facil, NIH, Bethesda, MD 20892 USA
关键词
Pupil; Pupillometry; Cross-species; Cognitive neuroscience; HIPPUS; MICROSACCADES; SOFTWARE;
D O I
10.3758/s13428-024-02545-7
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
Pupillometry is a popular method because pupil size is easily measured and sensitive to central neural activity linked to behavior, cognition, emotion, and perception. Currently, there is no method for online monitoring phases of pupil size fluctuation. We introduce rtPupilPhase-an open-source software that automatically detects trends in pupil size in real time. This tool enables novel applications of real-time pupillometry for achieving numerous research and translational goals. We validated the performance of rtPupilPhase on human, rodent, and monkey pupil data, and we propose future implementations of real-time pupillometry.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Time-frequency analysis of spontaneous fluctuation of the pupil size of the human eye
    Nowak, Wioletta
    Hachol, Andrzej
    Kasprzak, Henryk
    OPTICA APPLICATA, 2008, 38 (02) : 469 - 480
  • [22] Real-time water quality detection based on fluctuation feature analysis with the LSTM model
    Wang, Lixiang
    Dong, Huilin
    Cao, Yuqi
    Hou, Dibo
    Zhang, Guangxin
    JOURNAL OF HYDROINFORMATICS, 2023, 25 (01) : 140 - 149
  • [23] REAL-TIME PREPROCESSING SYSTEM OF PART SIZE DETECTION BASED ON FPGA
    Yurong, Pan
    Daode, Zhang
    Wei, Shang
    Xinyu, Hu
    JOURNAL OF FLOW VISUALIZATION AND IMAGE PROCESSING, 2021, 28 (04) : 27 - 40
  • [24] WORKSHOP HIGHLIGHTS REAL-TIME TRENDS
    MARLOWE, TJ
    IEEE SOFTWARE, 1992, 9 (05) : 111 - 111
  • [25] Trends in Real-time Traffic Simulation
    Pell, Andreas
    Meingast, Andreas
    Schauer, Oliver
    WORLD CONFERENCE ON TRANSPORT RESEARCH - WCTR 2016, 2017, 25 : 1477 - 1484
  • [26] Future trends in real-time simulation
    Howe, RM
    SYSTEM SIMULATION AND SCIENTIFIC COMPUTING (SHANGHAI), VOLS I AND II, 2002, : 12 - 19
  • [27] Real-Time Classification of Twitter Trends
    Zubiaga, Arkaitz
    Spina, Damiano
    Martinez, Raquel
    Fresno, Victor
    JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 2015, 66 (03) : 462 - 473
  • [28] Real-time Inspection System Utilizing Scatterometry Pupil Data
    Baek, Jae Yeon
    Leray, Philippe
    Charley, Anne-Laure
    Spanos, Costas J.
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXVIII, 2014, 9050
  • [29] Real-time inspection system utilizing scatterometry pupil data
    Baek, Jae Yeon
    Leray, Philippe
    Charley, Anne-Laure
    Spanos, Costas J.
    JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2014, 13 (04):
  • [30] WiRD: Real-Time and Cross Domain Detection System on Edge Device
    Yang, Qing
    Xing, Tianzhang
    Jiang, Zhiping
    Wang, Junfeng
    He, Jingyi
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT II, 2022, 13156 : 345 - 360