Discordance between a deep learning model and clinical-grade variant pathogenicity classification in a rare disease cohort

被引:0
|
作者
Kong, Sek Won [1 ,2 ]
Lee, In-Hee [1 ]
Collen, Lauren V. [2 ,3 ]
Field, Michael [2 ,3 ]
Manrai, Arjun K. [4 ]
Snapper, Scott B. [2 ,3 ]
Mandl, Kenneth D. [1 ,2 ,4 ]
机构
[1] Boston Childrens Hosp, Computat Hlth Informat Program, Boston, MA 02215 USA
[2] Harvard Med Sch, Dept Pediat, Boston, MA 02115 USA
[3] Boston Childrens Hosp, Div Gastroenterol Hepatol & Nutr, Boston, MA 02215 USA
[4] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
关键词
GENOMICS;
D O I
10.1038/s41525-025-00480-w
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genetic testing is essential for diagnosing and managing clinical conditions, particularly rare Mendelian diseases. Although efforts to identify rare phenotype-associated variants have focused on protein-truncating variants, interpreting missense variants remains challenging. Deep learning algorithms excel in various biomedical tasks1,2, yet distinguishing pathogenic from benign missense variants remains elusive3, 4-5. Our investigation of AlphaMissense (AM)5, a deep learning tool for predicting the potential functional impact of missense variants and assessing gene essentiality, reveals limitations in identifying pathogenic missense variants over 45 rare diseases, including very early onset inflammatory bowel disease. For the expert-curated pathogenic variants identified in our cohort, AM's precision was 32.9%, and recall was 57.6%. Notably, AM struggles to evaluate pathogenicity in intrinsically disordered regions (IDRs), resulting in unreliable gene-level essentiality scores for genes containing IDRs. This observation underscores ongoing challenges in clinical genetics, highlighting the need for continued refinement of computational methods in variant pathogenicity prediction.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A novel deep learning model for cabbage leaf disease detection and classification
    Girmaw, Dagne Walle
    Salau, Ayodeji Olalekan
    Mamo, Bayu Shimels
    Molla, Tibebu Legesse
    DISCOVER APPLIED SCIENCES, 2024, 6 (10)
  • [22] Plant leaf disease classification using EfficientNet deep learning model
    Atila, Umit
    Ucar, Murat
    Akyol, Kemal
    Ucar, Emine
    ECOLOGICAL INFORMATICS, 2021, 61
  • [23] Explainable deep learning model for automatic mulberry leaf disease classification
    Nahiduzzaman, Md.
    Chowdhury, Muhammad E. H.
    Salam, Abdus
    Nahid, Emama
    Ahmed, Faruque
    Al-Emadi, Nasser
    Ayari, Mohamed Arselene
    Khandakar, Amith
    Haider, Julfikar
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [24] Optimized Tuned Deep Learning Model for Chronic Kidney Disease Classification
    Aswathy, R. H.
    Suresh, P.
    Sikkandar, Mohamed Yacin
    Abdel-Khalek, S.
    Alhumyani, Hesham
    Saeed, Rashid A.
    Mansour, Romany F.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (02): : 2097 - 2111
  • [25] DEEP LEARNING-BASED ADAPTIVE ENSEMBLE LEARNING MODEL FOR CLASSIFICATION OF MONKEYPOX DISEASE
    Uzen, Huseyin
    Firat, Huseyin
    KONYA JOURNAL OF ENGINEERING SCIENCES, 2024, 12 (04):
  • [26] Transfer Learning-Based Deep Learning Model for Corn Leaf Disease Classification
    An, Justin
    Zhang, Nian
    Mahmoud, Wagdy H.
    ADVANCES IN NEURAL NETWORKS-ISNN 2024, 2024, 14827 : 163 - 173
  • [27] Exome copy number variant detection, analysis, and classification in a large cohort of families with undiagnosed rare genetic disease
    Lemire, Gabrielle
    Sanchis-Juan, Alba
    Russell, Kathryn
    Baxter, Samantha
    Chao, Katherine R.
    Singer-Berk, Moriel
    Groopman, Emily
    Wong, Isaac
    England, Eleina
    Goodrich, Julia
    Pais, Lynn
    Austin-Tse, Christina
    DiTroia, Stephanie
    O'Heir, Emily
    Ganesh, Vijay S.
    Wojcik, Monica H.
    Evangelista, Emily
    Snow, Hana
    Osei-Owusu, Ikeoluwa
    Fu, Jack
    Singh, Mugdha
    Mostovoy, Yulia
    Huang, Steve
    Garimella, Kiran
    Kirkham, Samantha L.
    Neil, Jennifer E.
    Shao, Diane D.
    Walsh, Christopher A.
    Argilli, Emanuela
    Le, Carolyn
    Sherr, Elliott H.
    Gleeson, Joseph G.
    Shril, Shirlee
    Schneider, Ronen
    Hildebrandt, Friedhelm
    Sankaran, Vijay G.
    Madden, Jill A.
    Genetti, Casie A.
    Beggs, Alan H.
    Agrawal, Pankaj B.
    Bujakowska, Kinga M.
    Place, Emily
    Pierce, Eric A.
    Donkervoort, Sandra
    Boennemann, Carsten G.
    Gallacher, Lyndon
    Stark, Zornitza
    Tan, Tiong Yang
    White, Susan M.
    Toepf, Ana
    AMERICAN JOURNAL OF HUMAN GENETICS, 2024, 111 (05) : 863 - 876
  • [28] Validation of a deep learning model for the classification of lung cancer in a large cohort of biopsied samples
    Toyokawa, G.
    Yamada, Y.
    Haratake, N.
    Shiraishi, Y.
    Takenaka, T.
    Tagawa, T.
    Shimokawa, M.
    Yamazaki, K.
    Momosaki, S.
    Takeo, S.
    Okamoto, I.
    Oda, Y.
    ANNALS OF ONCOLOGY, 2021, 32 : S926 - S927
  • [29] A Lightweight Deep Learning-Based Model for Tomato Leaf Disease Classification
    Ullah, Naeem
    Khan, Javed Ali
    Almakdi, Sultan
    Alshehri, Mohammed S.
    Al Qathrady, Mimonah
    Aldakheel, Eman Abdullah
    Khafaga, Doaa Sami
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (03): : 3969 - 3992
  • [30] A Hybrid CNN-LSTM Deep Learning Model for Classification of the Parkinson Disease
    El-Sayed, Rania Salah
    IAENG International Journal of Applied Mathematics, 2023, 53 (04)