Discordance between a deep learning model and clinical-grade variant pathogenicity classification in a rare disease cohort

被引:0
|
作者
Kong, Sek Won [1 ,2 ]
Lee, In-Hee [1 ]
Collen, Lauren V. [2 ,3 ]
Field, Michael [2 ,3 ]
Manrai, Arjun K. [4 ]
Snapper, Scott B. [2 ,3 ]
Mandl, Kenneth D. [1 ,2 ,4 ]
机构
[1] Boston Childrens Hosp, Computat Hlth Informat Program, Boston, MA 02215 USA
[2] Harvard Med Sch, Dept Pediat, Boston, MA 02115 USA
[3] Boston Childrens Hosp, Div Gastroenterol Hepatol & Nutr, Boston, MA 02215 USA
[4] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
关键词
GENOMICS;
D O I
10.1038/s41525-025-00480-w
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genetic testing is essential for diagnosing and managing clinical conditions, particularly rare Mendelian diseases. Although efforts to identify rare phenotype-associated variants have focused on protein-truncating variants, interpreting missense variants remains challenging. Deep learning algorithms excel in various biomedical tasks1,2, yet distinguishing pathogenic from benign missense variants remains elusive3, 4-5. Our investigation of AlphaMissense (AM)5, a deep learning tool for predicting the potential functional impact of missense variants and assessing gene essentiality, reveals limitations in identifying pathogenic missense variants over 45 rare diseases, including very early onset inflammatory bowel disease. For the expert-curated pathogenic variants identified in our cohort, AM's precision was 32.9%, and recall was 57.6%. Notably, AM struggles to evaluate pathogenicity in intrinsically disordered regions (IDRs), resulting in unreliable gene-level essentiality scores for genes containing IDRs. This observation underscores ongoing challenges in clinical genetics, highlighting the need for continued refinement of computational methods in variant pathogenicity prediction.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Classification of Diffuse Glioma Subtype from Clinical-Grade Pathological Images Using Deep Transfer Learning
    Im, Sanghyuk
    Hyeon, Jonghwan
    Rha, Eunyoung
    Lee, Janghyeon
    Choi, Ho-Jin
    Jung, Yuchae
    Kim, Tae-Jung
    SENSORS, 2021, 21 (10)
  • [2] Clinical-Grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning
    Echle, Amelie
    Grabsch, Heike Irmgard
    Quirke, Philip
    van den Brandt, Piet A.
    West, Nicholas P.
    Hutchins, Gordon G. A.
    Heij, Lara R.
    Tan, Xiuxiang
    Richman, Susan D.
    Krause, Jeremias
    Alwers, Elizabeth
    Jenniskens, Josien
    Offermans, Kelly
    Gray, Richard
    Brenner, Hermann
    Chang-Claude, Jenny
    Trautwein, Christian
    Pearson, Alexander T.
    Boor, Peter
    Luedde, Tom
    Gaisa, Nadine Therese
    Hoffmeister, Michael
    Kather, Jakob Nikolas
    GASTROENTEROLOGY, 2020, 159 (04) : 1406 - +
  • [3] A foundation model for clinical-grade computational pathology and rare cancers detection
    Vorontsov, Eugene
    Bozkurt, Alican
    Casson, Adam
    Shaikovski, George
    Zelechowski, Michal
    Severson, Kristen
    Zimmermann, Eric
    Hall, James
    Tenenholtz, Neil
    Fusi, Nicolo
    Yang, Ellen
    Mathieu, Philippe
    van Eck, Alexander
    Lee, Donghun
    Viret, Julian
    Robert, Eric
    Wang, Yi Kan
    Kunz, Jeremy D.
    Lee, Matthew C. H.
    Bernhard, Jan H.
    Godrich, Ran A.
    Oakley, Gerard
    Millar, Ewan
    Hanna, Matthew
    Wen, Hannah
    Retamero, Juan A.
    Moye, William A.
    Yousfi, Razik
    Kanan, Christopher
    Klimstra, David S.
    Rothrock, Brandon
    Liu, Siqi
    Fuchs, Thomas J.
    NATURE MEDICINE, 2024, 30 (10) : 2924 - 2935
  • [4] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Gabriele Campanella
    Matthew G. Hanna
    Luke Geneslaw
    Allen Miraflor
    Vitor Werneck Krauss Silva
    Klaus J. Busam
    Edi Brogi
    Victor E. Reuter
    David S. Klimstra
    Thomas J. Fuchs
    Nature Medicine, 2019, 25 : 1301 - 1309
  • [5] Clinical-grade Computational Pathology Using Weakly Supervised Deep Learning on Whole Slide Images
    Barisoni, Laura
    Luo, Xunrong
    TRANSPLANTATION, 2019, 103 (11) : 2213 - 2214
  • [6] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [7] Deep Learning Model for Protein Disease Classification
    Mostafa, Farida Alaaeldin
    Afify, Yasmine Mohamed
    Ismail, Rasha Mohamed
    Badr, Nagwa Lotfy
    CURRENT BIOINFORMATICS, 2022, 17 (03) : 245 - 253
  • [8] Best Practices of Dataset Generation for Clinical-Grade Deep Learning Image Analysis with Application to Mitosis Detection
    Bisson, Tom
    Kiehl, Rasmus
    Carvalho, Rita
    Lohmann, Sebastian
    Lang, Tobias
    Springenberg, Sebastian
    Saeger, Kai
    Zlobec, Inti
    Hufnagl, Peter
    Zerbe, Norman
    LABORATORY INVESTIGATION, 2022, 102 (SUPPL 1) : 1063 - 1064
  • [9] Best Practices of Dataset Generation for Clinical-Grade Deep Learning Image Analysis with Application to Mitosis Detection
    Bisson, Tom
    Kiehl, Rasmus
    Carvalho, Rita
    Lohmann, Sebastian
    Lang, Tobias
    Springenberg, Sebastian
    Saeger, Kai
    Zlobec, Inti
    Hufnagl, Peter
    Zerbe, Norman
    MODERN PATHOLOGY, 2022, 35 (SUPPL 2) : 1063 - 1064
  • [10] Clinical-grade endometrial cancer detection system via whole-slide images using deep learning
    Zhang, Xiaobo
    Ba, Wei
    Zhao, Xiaoya
    Wang, Chen
    Li, Qiting
    Zhang, Yinli
    Lu, Shanshan
    Wang, Lang
    Wang, Shuhao
    Song, Zhigang
    Shen, Danhua
    FRONTIERS IN ONCOLOGY, 2022, 12