Dynamic analysis of high-order fuzzy difference equation

被引:1
|
作者
Gumus, Mehmet [1 ]
Yalcinkaya, Ibrahim [2 ]
Tollu, Durhasan Turgut [2 ]
机构
[1] Zonguldak Bulent Ecevit Univ, Fac Sci, Dept Math, TR-67100 Zonguldak, Turkiye
[2] Necmettin Erbakan Univ, Fac Sci, Dept Math & Comp Sci, TR-42090 Konya, Turkiye
关键词
Boundedness; Convergence; Fuzzy number; Fuzzy difference equations; alpha-cuts; BEHAVIOR; STABILITY;
D O I
10.1007/s12190-024-02280-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we discuss the existence, boundedness, and asymptotic behavior of the positive solutions of the fuzzy difference equation omega(n+1 )= A omega(n-1)/B + C omega(p)(n-k), n is an element of N-0 with the parameters A, B, C and the initial conditions omega(-i) (i = 0, 1, ..., k) are positive fuzzy numbers and p, k is an element of Z(+). The theoretical results obtained are also supported and visualized by numerical simulations.
引用
收藏
页码:1285 / 1308
页数:24
相关论文
共 50 条
  • [21] High-order compact difference scheme for the regularized long wave equation
    Lin, Jianguo
    Xie, Zhihua
    Zhou, Juntao
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2007, 23 (02): : 135 - 156
  • [22] High-Order Compact Difference Schemes for the Modified Anomalous Subdiffusion Equation
    Ding, Hengfei
    Li, Changpin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (01) : 213 - 242
  • [23] High-order finite difference method for the Schrodinger equation on deforming domains
    Rydin, Ylva Ljungberg
    Mattsson, Ken
    Werpers, Jonatan
    Sjoqvist, Erik
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 443
  • [24] An efficient high-order compact finite difference method for the Helmholtz equation
    Biazar, Jafar
    Asayesh, Roxana
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (03): : 553 - 563
  • [25] A new conservative high-order accurate difference scheme for the Rosenau equation
    Atouani, Noureddine
    Omrani, Khaled
    APPLICABLE ANALYSIS, 2015, 94 (12) : 2435 - 2455
  • [26] A new stability criterion for high-order dynamic fuzzy systems
    Zeighami, Z.
    Jahed-Motlagh, M. R.
    Moarefianpour, A.
    Heydari, G.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2022, 19 (02): : 187 - 203
  • [27] Analysis of a high-order finite difference detector for discontinuities
    Bambozzi de Oliveira, Maria Luisa
    Pires, Vitor Alves
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (04) : 676 - 689
  • [28] Asymptotic analysis of high-order solitons for the Hirota equation
    Zhang, Xiaoen
    Ling, Liming
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 426
  • [29] Design of high-order difference scheme and analysis of solution characteristics - Part I: General formulation of high-order difference schemes and analysis of convective stability
    Jin, W. W.
    Tao, W. Q.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2007, 52 (03) : 247 - 270
  • [30] A high-order compact finite difference scheme and its analysis for the time-fractional diffusion equation
    Roul, Pradip
    Goura, V. M. K. Prasad
    Agarwal, Ravi
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (10) : 2146 - 2175