Magic spreading in random quantum circuits

被引:0
|
作者
Turkeshi, Xhek [1 ]
Tirrito, Emanuele [2 ,3 ,4 ]
Sierant, Piotr [5 ,6 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Abdus Salam Int Ctr Theoret Phys ICTP, Trieste, Italy
[3] Univ Trento, Pitaevskii BEC Ctr, CNR INO, Trento, Italy
[4] Univ Trento, Dipartimento Fis, Trento, Italy
[5] Barcelona Inst Sci & Technol, Inst Ciencies Foton, ICFO, Barcelona 08860, Spain
[6] Barcelona Supercomp Ctr, Barcelona, Spain
基金
欧洲研究理事会;
关键词
ENTANGLEMENT;
D O I
10.1038/s41467-025-57704-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magic is the resource that quantifies the amount of beyond-Clifford operations necessary for universal quantum computing. It bounds the cost of classically simulating quantum systems via stabilizer circuits central to quantum error correction and computation. In this paper, we investigate how fast generic many-body dynamics generate magic resources under the constraints of locality and unitarity, focusing on magic spreading in brick-wall random unitary circuits. We explore scalable magic measures intimately connected to the algebraic structure of the Clifford group. These metrics enable the investigation of the spreading of magic for system sizes of up to N = 1024 qudits, surpassing the previous state-of-the-art, which was restricted to about a dozen qudits. We demonstrate that magic resources equilibrate on timescales logarithmic in the system size, akin to anti-concentration and Hilbert space delocalization phenomena, but qualitatively different from the spreading of entanglement entropy. As random circuits are minimal models for chaotic dynamics, we conjecture that our findings describe the phenomenology of magic resources growth in a broad class of chaotic many-body systems.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Phase transition in magic with random quantum circuits
    Niroula, Pradeep
    White, Christopher David
    Wang, Qingfeng
    Johri, Sonika
    Zhu, Daiwei
    Monroe, Christopher
    Noel, Crystal
    Gullans, Michael J.
    NATURE PHYSICS, 2024, 20 (11) : 1786 - 1792
  • [2] Operator Spreading in Random Unitary Circuits
    Nahum, Adam
    Vijay, Sagar
    Haah, Jeongwan
    PHYSICAL REVIEW X, 2018, 8 (02):
  • [3] Random Quantum Circuits
    Fisher, Matthew P. A.
    Khemani, Vedika
    Nahum, Adam
    Vijay, Sagar
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, 2023, 14 : 335 - 379
  • [4] QUANTUM INFORMATION Circuits that process with magic
    Simmonds, Raymond W.
    Strauch, Frederick W.
    NATURE, 2009, 460 (7252) : 187 - 188
  • [5] Decoupling with Random Quantum Circuits
    Brown, Winton
    Fawzi, Omar
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 340 (03) : 867 - 900
  • [6] The hardness of random quantum circuits
    Ramis Movassagh
    Nature Physics, 2023, 19 : 1719 - 1724
  • [7] The hardness of random quantum circuits
    Movassagh, Ramis
    NATURE PHYSICS, 2023, 19 (11) : 1719 - +
  • [8] Decoupling with Random Quantum Circuits
    Winton Brown
    Omar Fawzi
    Communications in Mathematical Physics, 2015, 340 : 867 - 900
  • [9] Random projection using random quantum circuits
    Kumaran, Keerthi
    Sajjan, Manas
    Oh, Sangchul
    Kais, Sabre
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [10] Complexity of Quantum Circuits via Sensitivity, Magic, and Coherence
    Bu, Kaifeng
    Garcia, Roy J.
    Jaffe, Arthur
    Koh, Dax Enshan
    Li, Lu
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (07)