A Note on Additive Bases of Abelian Groups of Rank 2

被引:0
|
作者
Qu, Yongke [1 ]
Li, Yuanlin [2 ]
Wang, Qinghong [3 ]
Zhao, Xiaoyue [4 ]
机构
[1] Luoyang Normal Univ, Dept Math, Luoyang 471934, Peoples R China
[2] Brock Univ, Dept Math & Stat, St Catharines, ON L2S 3A1, Canada
[3] Tianjin Univ Technol, Sch Sci, Tianjin 300384, Peoples R China
[4] Tiangong Univ, Math Sci, Tianjin 300387, Peoples R China
关键词
Finite abelian group; Additive basis; Regular sequence; THEOREMS;
D O I
10.1007/s00373-025-02895-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite abelian group and p be the smallest prime divisor of |G|. Let S be a sequence over G. We say that S is regular if S contains at most |H|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H|-1$$\end{document} terms from H for every proper subgroup H & subne;G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \subsetneq G$$\end{document}. Let c0(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{c}_0(G)$$\end{document} be the smallest integer t such that every regular sequence S over G of length |S|>= t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|\ge t$$\end{document} forms an additive basis of G, i.e., & sum;(S)=G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum (S)=G$$\end{document}. It was conjectured by Gao et al. [2] that c0(G)=m(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf{c}}_0(G)=m(G)$$\end{document}. In this note, we confirm the conjecture for the case when G=Cn1 circle plus Cn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=C_{n_1}\oplus C_{n_2}$$\end{document} with n1|n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_1|n_2$$\end{document}, p >= 11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 11$$\end{document} and n1 >= p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_1\ge p<^>2$$\end{document} and we also characterize the structure of regular sequences S over G of length |S|=c0(G)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|={\textsf{c}}_0(G)-1$$\end{document} with & sum;(S)not equal G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum (S)\ne G$$\end{document}.
引用
收藏
页数:8
相关论文
共 50 条