Ascent and descent of multiplication and composition induced operators on variable exponent lebesgue spaces

被引:0
|
作者
Gopal Datt [1 ]
Daljeet Singh Bajaj [2 ]
Alberto Fiorenza [3 ]
机构
[1] PGDAV College,Department of Mathematics
[2] University of Delhi,Department of Mathematics
[3] University of Delhi,undefined
[4] Università di Napoli “Federico II”,undefined
[5] Istituto per le Applicazioni del Calcolo “Mauro Picone”,undefined
[6] C.N.R.,undefined
关键词
Ascent; Descent; Multiplication operators; Composition operators; Weighted composition operators; Variable exponent Lebesgue spaces; Primary 47B33; Secondary 47B38; 46E30;
D O I
10.1007/s12215-024-01121-4
中图分类号
学科分类号
摘要
The paper focuses on determining the ascent and descent of multiplication, composition, and weighted composition operators on variable exponent Lebesgue spaces. We explore the conditions on the measurable functions u and measurable transformations T defined on σ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma -$$\end{document}finite complete measure space (X,A,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,\mathcal {A},\mu )$$\end{document} that cause these operators on variable exponent Lebesgue spaces to have finite or infinite ascent (descent).
引用
收藏
相关论文
共 50 条