Multi-ancestry genome-wide association analyses: a comparison of meta- and mega-analyses in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study

被引:0
|
作者
Kuang, Alan [1 ]
Hivert, Marie-France [2 ,3 ,4 ,5 ]
Hayes, M. Geoffrey [6 ]
Lowe Jr, William L. [6 ]
Scholtens, Denise M. [1 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Dept Prevent Med, Chicago, IL 60611 USA
[2] Massachusetts Gen Hosp, Dept Med, Boston, MA USA
[3] Harvard Med Sch, Harvard Pilgrim Hlth Care Inst, Dept Populat Med, Boston, MA USA
[4] Univ Sherbrooke, Fac Med & Hlth Sci, Dept Med, Sherbrooke, PQ, Canada
[5] Ctr Hosp Univ Sherbrooke, Ctr Rech, Sherbrooke, PQ, Canada
[6] Northwestern Univ, Feinberg Sch Med, Dept Med, Chicago, IL USA
来源
BMC GENOMICS | 2025年 / 26卷 / 01期
基金
美国国家卫生研究院;
关键词
Genome-wide association analysis; Multi-ancestry; Meta-analysis; Mega-analysis; GESTATIONAL DIABETES-MELLITUS; HARDY-WEINBERG EQUILIBRIUM; FASTING PLASMA-GLUCOSE; GENOTYPE IMPUTATION; GENETIC-VARIANTS; METAANALYSIS; DIVERSITY; MTNR1B; METABOLOME; DISEASE;
D O I
10.1186/s12864-025-11229-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundThere is increasing need for effective incorporation of high-dimensional genetics data from individuals with varied ancestry in genome-wide association (GWAS) analyses. Classically, multi-ancestry GWAS analyses are performed using statistical meta-analysis to combine results conducted within homogeneous ancestry groups. The emergence of cosmopolitan reference panels makes collective preprocessing of GWAS data possible, but impact on downstream GWAS results in a mega-analysis framework merits investigation. We utilized GWAS data from the multi-national Hyperglycemia and Adverse Pregnancy Outcome Study to investigate differences in GWAS findings using a homogeneous ancestry meta-analysis versus a heterogeneous ancestry mega-analysis pipeline. Maternal fasting and 1-hr glucose and metabolomics measured during a 2-hr 75-gram oral glucose tolerance test during early third trimester pregnancy were evaluated as phenotypes.ResultsFor the homogeneous ancestry meta-analysis pipeline, variant data were prepared by identifying sets of individuals with similar ancestry and imputing to ancestry-specific reference panels. GWAS was conducted within each ancestry group and results were combined using random-effects meta-analysis. For the heterogeneous ancestry mega-analysis pipeline, data for all individuals were collectively imputed to the Trans-Omics for Precision Medicine (TOPMed) cosmopolitan reference panel, and GWAS was conducted using a unified mega-analysis. The meta-analysis pipeline identified genome-wide significant associations for 15 variants in a region close to GCK on chromosome 7 with maternal fasting glucose and no significant findings for 1-hr glucose. Associations in this same region were identified using the mega-analysis pipeline, along with a well-documented association at MTNR1B on chromosome 11 with both fasting and 1-hr maternal glucose. For metabolomics analyses, the number of significant findings in the heterogeneous ancestry mega-analysis far exceeded those from the homogeneous ancestry meta-analysis and confirmed many previously documented associations, but genomic inflation factors were much more variable.ConclusionsFor multi-ancestry GWAS, heterogeneous ancestry mega-analysis generates a rich set of variants for analysis using a cosmopolitan reference panel and results in vastly more significant, biologically credible and previously documented associations than a homogeneous ancestry meta-analysis approach. Genomic inflation factors do indicate that findings from the mega-analysis pipeline may merit cautious interpretation and further follow-up.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Gene discovery and biological insights into anxiety disorders from a large-scale multi-ancestry genome-wide association study
    Friligkou, Eleni
    Lokhammer, Solveig
    Cabrera-Mendoza, Brenda
    Shen, Jie
    He, Jun
    Deiana, Giovanni
    Zanoaga, Mihaela Diana
    Asgel, Zeynep
    Pilcher, Abigail
    Di Lascio, Luciana
    Makharashvili, Ana
    Koller, Dora
    Tylee, Daniel S.
    Pathak, Gita A.
    Polimanti, Renato
    NATURE GENETICS, 2024, 56 (10) : 2036 - 2045
  • [42] Multi-ancestry genome-wide association meta-analysis of 293,000 individuals identifies 217 regions for the electrocardiographic PR interval
    Ntalla, I.
    Weng, L.
    Warren, H. R.
    Jamshidi, Y.
    Munroe, P. B.
    Lubitz, S. A.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 158 - 159
  • [43] GENE DISCOVERY AND BIOLOGICAL INSIGHTS INTO ANXIETY DISORDERS FROM A MULTI-ANCESTRY GENOME-WIDE ASSOCIATION STUDY OF > 1.2 MILLION PARTICIPANTS
    Friligkou, Eleni
    Lokhammer, Solveig
    Mendoza, Brenda Cabrera
    Shen, Jie
    He, Jun
    Deiana, Giovanni
    Zanoaga, Mihaela Diana
    Asgel, Zeynep
    Pilcher, Abigail
    Di Lascio, Luciana
    Makharashvili, Ana
    Koller, Dora
    Tylee, Daniel
    Pathak, Gita
    Polimanti, Renato
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2024, 87 : 74 - 75
  • [44] Multi-ancestry genome-wide association study of major depression aids locus discovery, fine mapping, gene prioritization and causal inference
    Xiangrui Meng
    Georgina Navoly
    Olga Giannakopoulou
    Daniel F. Levey
    Dora Koller
    Gita A. Pathak
    Nastassja Koen
    Kuang Lin
    Mark J. Adams
    Miguel E. Rentería
    Yanzhe Feng
    J. Michael Gaziano
    Dan J. Stein
    Heather J. Zar
    Megan L. Campbell
    David A. van Heel
    Bhavi Trivedi
    Sarah Finer
    Andrew McQuillin
    Nick Bass
    V. Kartik Chundru
    Hilary C. Martin
    Qin Qin Huang
    Maria Valkovskaya
    Chia-Yi Chu
    Susan Kanjira
    Po-Hsiu Kuo
    Hsi-Chung Chen
    Shih-Jen Tsai
    Yu-Li Liu
    Kenneth S. Kendler
    Roseann E. Peterson
    Na Cai
    Yu Fang
    Srijan Sen
    Laura J. Scott
    Margit Burmeister
    Ruth J. F. Loos
    Michael H. Preuss
    Ky’Era V. Actkins
    Lea K. Davis
    Monica Uddin
    Agaz H. Wani
    Derek E. Wildman
    Allison E. Aiello
    Robert J. Ursano
    Ronald C. Kessler
    Masahiro Kanai
    Yukinori Okada
    Saori Sakaue
    Nature Genetics, 2024, 56 : 222 - 233
  • [45] Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk (vol 55, pg 410, 2023)
    Shrine, Nick
    Izquierdo, Abril G.
    Chen, Jing
    Packer, Richard
    Hall, Robert J.
    Guyatt, Anna L.
    Batini, Chiara
    Thompson, Rebecca J.
    Pavuluri, Chandan
    Malik, Vidhi
    Hobbs, Brian D.
    Moll, Matthew
    Kim, Wonji
    Tal-Singer, Ruth
    Bakke, Per
    Fawcett, Katherine A.
    John, Catherine
    Coley, Kayesha
    Piga, Noemi Nicole
    Pozarickij, Alfred
    Lin, Kuang
    Millwood, Iona Y.
    Chen, Zhengming
    Li, Liming
    Wijnant, Sara R. A.
    Lahousse, Lies
    Brusselle, Guy
    Uitterlinden, Andre G.
    Manichaikul, Ani
    Oelsner, Elizabeth C.
    Rich, Stephen S.
    Barr, R. Graham
    Kerr, Shona M.
    Vitart, Veronique
    Brown, Michael R.
    Wielscher, Matthias
    Imboden, Medea
    Jeong, Ayoung
    Bartz, Traci M.
    Gharib, Sina A.
    Flexeder, Claudia
    Karrasch, Stefan
    Gieger, Christian
    Peters, Annette
    Stubbe, Beate
    Hu, Xiaowei
    Ortega, Victor E.
    Meyers, Deborah A.
    Bleecker, Eugene R.
    Gabriel, Stacey B.
    NATURE GENETICS, 2023, 55 (10) : 1778 - 1779
  • [46] Multi-ancestry genome-wide association study of major depression aids locus discovery, fine mapping, gene prioritization and causal inference
    Meng, Xiangrui
    Navoly, Georgina
    Giannakopoulou, Olga
    Levey, Daniel F.
    Koller, Dora
    Pathak, Gita A.
    Koen, Nastassja
    Lin, Kuang
    Adams, Mark J.
    Renteria, Miguel E.
    Feng, Yanzhe
    Gaziano, J. Michael
    Stein, Dan J.
    Zar, Heather J.
    Campbell, Megan L.
    van Heel, David A.
    Trivedi, Bhavi
    Finer, Sarah
    McQuillin, Andrew
    Bass, Nick
    Chundru, V. Kartik
    Martin, Hilary C.
    Huang, Qin Qin
    Valkovskaya, Maria
    Chu, Chia-Yi
    Kanjira, Susan
    Kuo, Po-Hsiu
    Chen, Hsi-Chung
    Tsai, Shih-Jen
    Liu, Yu-Li
    Kendler, Kenneth S.
    Peterson, Roseann E.
    Cai, Na
    Fang, Yu
    Sen, Srijan
    Scott, Laura J.
    Burmeister, Margit
    Loos, Ruth J. F.
    Preuss, Michael H.
    Actkins, Ky'Era V.
    Davis, Lea K.
    Uddin, Monica
    Wani, Agaz H.
    Wildman, Derek E.
    Aiello, Allison E.
    Ursano, Robert J.
    Kessler, Ronald C.
    Kanai, Masahiro
    Okada, Yukinori
    Sakaue, Saori
    NATURE GENETICS, 2024, 56 (02) : 222 - +
  • [47] A multi-ancestry genome-wide association study of umbilical cord insulin and c-peptide levels will form the basis of an important future bioresource
    Hughes, A. E.
    Kuang, A.
    Lim, B.
    Fore, R.
    Hatem, G.
    Allard, C.
    Morris, A. P.
    Lawlor, D. A.
    Beaumont, R. N.
    Lowe, W. L., Jr.
    Hivert, W-F.
    Prashad, R.
    Freathy, R.
    DIABETIC MEDICINE, 2022, 39
  • [48] Multi-ancestry genome-wide association study accounting for gene-psychosocial factor interactions identifies novel loci for blood pressure traits
    Sun, Daokun
    Richard, Melissa A.
    Musani, Solomon K.
    Sung, Yun Ju
    Winkler, Thomas W.
    Schwander, Karen
    Chai, Jin Fang
    Guo, Xiuqing
    Kilpelainen, Tuomas O.
    Vojinovic, Dina
    Aschard, Hugues
    Bartz, Traci M.
    Bielak, Lawrence F.
    Brown, Michael R.
    Chitrala, Kumaraswamy
    Hartwig, Fernando P.
    Horimoto, Andrea R. V. R.
    Liu, Yongmei
    Manning, Alisa K.
    Noordam, Raymond
    Smith, Albert, V
    Harris, Sarah E.
    Kuehnel, Brigitte
    Lyytikainen, Leo-Pekka
    Nolte, Ilja M.
    Rauramaa, Rainer
    van der Most, Peter J.
    Wang, Rujia
    Ware, Erin B.
    Weiss, Stefan
    Wen, Wanqing
    Yanek, Lisa R.
    Arking, Dan E.
    Arnett, Donna K.
    Barac, Ana
    Boerwinkle, Eric
    Broeckel, Ulrich
    Chakravarti, Aravinda
    Chen, Yii-Der Ida
    Cupples, L. Adrienne
    Davigulus, Martha L.
    de las Fuentes, Lisa
    de Mutsert, Renee
    de Vries, Paul S.
    Delaney, Joseph A. C.
    Roux, Ana V. Diez
    Dorr, Marcus
    Faul, Jessica D.
    Fretts, Amanda M.
    Gallo, Linda C.
    HUMAN GENETICS AND GENOMICS ADVANCES, 2021, 2 (01):
  • [49] Multi-ancestry genetic risk score for lung function from meta-analysis of genome-wide association studies in 580,869 individuals from five ancestry groups
    Shrine, N.
    Izqueirdo, A.
    Chen, J.
    Guyatt, A. L.
    Packer, R.
    Batini, C.
    Pozarickij, A.
    Walters, R. G.
    London, S.
    Morris, A. P.
    Wain, L. V.
    Hall, I. P.
    Tobin, M. D.
    EUROPEAN RESPIRATORY JOURNAL, 2022, 60
  • [50] MULTI-ANCESTRY GENOME-WIDE ASSOCIATION STUDY OF 4,069 CHILDREN WITH GLIOMA IDENTIFIES 9P21.3 RISK LOCUS
    Foss-Skiftesvik, J.
    Li, S.
    Rosenbaum, A.
    Hagen, C. M.
    Stoltze, U. K.
    Ljungqvist, S.
    Hjalmars, U.
    Schmiegelow, K.
    Morimoto, L.
    De Smith, A. J.
    Mathiasen, R.
    Metayer, C.
    Hougaard, D. M.
    Melin, B.
    Walsh, K. M.
    Bybjerg-Grauholm, J.
    Dahlin, A. M.
    Wiemels, J. L.
    NEURO-ONCOLOGY, 2023, 25