Multi-ancestry genome-wide association analyses: a comparison of meta- and mega-analyses in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study

被引:0
|
作者
Kuang, Alan [1 ]
Hivert, Marie-France [2 ,3 ,4 ,5 ]
Hayes, M. Geoffrey [6 ]
Lowe Jr, William L. [6 ]
Scholtens, Denise M. [1 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Dept Prevent Med, Chicago, IL 60611 USA
[2] Massachusetts Gen Hosp, Dept Med, Boston, MA USA
[3] Harvard Med Sch, Harvard Pilgrim Hlth Care Inst, Dept Populat Med, Boston, MA USA
[4] Univ Sherbrooke, Fac Med & Hlth Sci, Dept Med, Sherbrooke, PQ, Canada
[5] Ctr Hosp Univ Sherbrooke, Ctr Rech, Sherbrooke, PQ, Canada
[6] Northwestern Univ, Feinberg Sch Med, Dept Med, Chicago, IL USA
来源
BMC GENOMICS | 2025年 / 26卷 / 01期
基金
美国国家卫生研究院;
关键词
Genome-wide association analysis; Multi-ancestry; Meta-analysis; Mega-analysis; GESTATIONAL DIABETES-MELLITUS; HARDY-WEINBERG EQUILIBRIUM; FASTING PLASMA-GLUCOSE; GENOTYPE IMPUTATION; GENETIC-VARIANTS; METAANALYSIS; DIVERSITY; MTNR1B; METABOLOME; DISEASE;
D O I
10.1186/s12864-025-11229-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundThere is increasing need for effective incorporation of high-dimensional genetics data from individuals with varied ancestry in genome-wide association (GWAS) analyses. Classically, multi-ancestry GWAS analyses are performed using statistical meta-analysis to combine results conducted within homogeneous ancestry groups. The emergence of cosmopolitan reference panels makes collective preprocessing of GWAS data possible, but impact on downstream GWAS results in a mega-analysis framework merits investigation. We utilized GWAS data from the multi-national Hyperglycemia and Adverse Pregnancy Outcome Study to investigate differences in GWAS findings using a homogeneous ancestry meta-analysis versus a heterogeneous ancestry mega-analysis pipeline. Maternal fasting and 1-hr glucose and metabolomics measured during a 2-hr 75-gram oral glucose tolerance test during early third trimester pregnancy were evaluated as phenotypes.ResultsFor the homogeneous ancestry meta-analysis pipeline, variant data were prepared by identifying sets of individuals with similar ancestry and imputing to ancestry-specific reference panels. GWAS was conducted within each ancestry group and results were combined using random-effects meta-analysis. For the heterogeneous ancestry mega-analysis pipeline, data for all individuals were collectively imputed to the Trans-Omics for Precision Medicine (TOPMed) cosmopolitan reference panel, and GWAS was conducted using a unified mega-analysis. The meta-analysis pipeline identified genome-wide significant associations for 15 variants in a region close to GCK on chromosome 7 with maternal fasting glucose and no significant findings for 1-hr glucose. Associations in this same region were identified using the mega-analysis pipeline, along with a well-documented association at MTNR1B on chromosome 11 with both fasting and 1-hr maternal glucose. For metabolomics analyses, the number of significant findings in the heterogeneous ancestry mega-analysis far exceeded those from the homogeneous ancestry meta-analysis and confirmed many previously documented associations, but genomic inflation factors were much more variable.ConclusionsFor multi-ancestry GWAS, heterogeneous ancestry mega-analysis generates a rich set of variants for analysis using a cosmopolitan reference panel and results in vastly more significant, biologically credible and previously documented associations than a homogeneous ancestry meta-analysis approach. Genomic inflation factors do indicate that findings from the mega-analysis pipeline may merit cautious interpretation and further follow-up.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis
    Kazuyoshi Ishigaki
    Saori Sakaue
    Chikashi Terao
    Yang Luo
    Kyuto Sonehara
    Kensuke Yamaguchi
    Tiffany Amariuta
    Chun Lai Too
    Vincent A. Laufer
    Ian C. Scott
    Sebastien Viatte
    Meiko Takahashi
    Koichiro Ohmura
    Akira Murasawa
    Motomu Hashimoto
    Hiromu Ito
    Mohammed Hammoudeh
    Samar Al Emadi
    Basel K. Masri
    Hussein Halabi
    Humeira Badsha
    Imad W. Uthman
    Xin Wu
    Li Lin
    Ting Li
    Darren Plant
    Anne Barton
    Gisela Orozco
    Suzanne M. M. Verstappen
    John Bowes
    Alexander J. MacGregor
    Suguru Honda
    Masaru Koido
    Kohei Tomizuka
    Yoichiro Kamatani
    Hiroaki Tanaka
    Eiichi Tanaka
    Akari Suzuki
    Yuichi Maeda
    Kenichi Yamamoto
    Satoru Miyawaki
    Gang Xie
    Jinyi Zhang
    Christopher I. Amos
    Edward Keystone
    Gertjan Wolbink
    Irene van der Horst-Bruinsma
    Jing Cui
    Katherine P. Liao
    Robert J. Carroll
    Nature Genetics, 2022, 54 : 1640 - 1651
  • [2] Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis
    Ishigaki, Kazuyoshi
    Sakaue, Saori
    Terao, Chikashi
    Luo, Yang
    Sonehara, Kyuto
    Yamaguchi, Kensuke
    Amariuta, Tiffany
    Too, Chun Lai
    Laufer, Vincent A.
    Scott, Ian C.
    Viatte, Sebastien
    Takahashi, Meiko
    Ohmura, Koichiro
    Murasawa, Akira
    Hashimoto, Motomu
    Ito, Hiromu
    Hammoudeh, Mohammed
    Al Emadi, Samar
    Masri, Basel K.
    Halabi, Hussein
    Badsha, Humeira
    Uthman, Imad W.
    Wu, Xin
    Lin, Li
    Li, Ting
    Plant, Darren
    Barton, Anne
    Orozco, Gisela
    Verstappen, Suzanne M. M.
    Bowes, John
    MacGregor, Alexander J.
    Honda, Suguru
    Koido, Masaru
    Tomizuka, Kohei
    Kamatani, Yoichiro
    Tanaka, Hiroaki
    Tanaka, Eiichi
    Suzuki, Akari
    Maeda, Yuichi
    Yamamoto, Kenichi
    Miyawaki, Satoru
    Xie, Gang
    Zhang, Jinyi
    Amos, Christopher, I
    Keystone, Edward
    Wolbink, Gertjan
    Van der Horst-Bruinsma, Irene
    Cui, Jing
    Liao, Katherine P.
    Carroll, Robert J.
    NATURE GENETICS, 2022, 54 (11) : 1640 - +
  • [3] Multi-ancestry genome-wide association study of asthma exacerbations
    Herrera-Luis, Esther
    Ortega, Victor E.
    Ampleford, Elizabeth J.
    Sio, Yang Yie
    Granell, Raquel
    de Roos, Emmely
    Terzikhan, Natalie
    Vergara, Ernesto Elorduy
    Hernandez-Pacheco, Natalia
    Perez-Garcia, Javier
    Martin-Gonzalez, Elena
    Lorenzo-Diaz, Fabian
    Hashimoto, Simone
    Brinkman, Paul
    Jorgensen, Andrea L.
    Yan, Qi
    Forno, Erick
    Vijverberg, Susanne J.
    Lethem, Ryan
    Espuela-Ortiz, Antonio
    Gorenjak, Mario
    Eng, Celeste
    Gonzalez-Perez, Ruperto
    Hernandez-Perez, Jose M.
    Poza-Guedes, Paloma
    Sardon, Olaia
    Corcuera, Paula
    Hawkins, Greg A.
    Marsico, Annalisa
    Bahmer, Thomas
    Rabe, Klaus F.
    Hansen, Gesine
    Kopp, Matthias Volkmar
    Rios, Raimon
    Cruz, Maria Jesus
    Gonzalez-Barcala, Francisco-Javier
    Maria Olaguibel, Jose
    Plaza, Vicente
    Quirce, Santiago
    Canino, Glorisa
    Cloutier, Michelle
    Del Pozo, Victoria
    Rodriguez-Santana, Jose R.
    Korta-Murua, Javier
    Villar, Jesus
    Potocnik, Uros
    Figueiredo, Camila
    Kabesch, Michael
    Mukhopadhyay, Somnath
    Pirmohamed, Munir
    PEDIATRIC ALLERGY AND IMMUNOLOGY, 2022, 33 (06)
  • [4] MULTI-ANCESTRY GENOME-WIDE ASSOCIATION STUDY OF ALZHEIMER'S DISEASE
    Uffelmann, Emil
    Wightman, Douglas
    Shadrin, Alexey
    Fominykh, Vera
    Bahrami, Shahram
    Andreassen, Ole
    Posthuma, Danielle
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2024, 87 : 182 - 183
  • [5] A multi-ancestry genome-wide association study in type 1 diabetes
    Michalek, Dominika A.
    Tern, Courtney
    Zhou, Wei
    Robertson, Catherine C.
    Farber, Emily
    Campolieto, Paul
    Chen, Wei-Min
    Onengut-Gumuscu, Suna
    Rich, Stephen S.
    HUMAN MOLECULAR GENETICS, 2024, 33 (11) : 958 - 968
  • [6] Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus
    Chachrit Khunsriraksakul
    Qinmengge Li
    Havell Markus
    Matthew T. Patrick
    Renan Sauteraud
    Daniel McGuire
    Xingyan Wang
    Chen Wang
    Lida Wang
    Siyuan Chen
    Ganesh Shenoy
    Bingshan Li
    Xue Zhong
    Nancy J. Olsen
    Laura Carrel
    Lam C. Tsoi
    Bibo Jiang
    Dajiang J. Liu
    Nature Communications, 14
  • [7] Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus
    Khunsriraksakul, Chachrit
    Li, Qinmengge
    Markus, Havell
    Patrick, Matthew T.
    Sauteraud, Renan
    McGuire, Daniel
    Wang, Xingyan
    Wang, Chen
    Wang, Lida
    Chen, Siyuan
    Shenoy, Ganesh
    Li, Bingshan
    Zhong, Xue
    Olsen, Nancy J.
    Carrel, Laura
    Tsoi, Lam C.
    Jiang, Bibo
    Liu, Dajiang J.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [8] Multi-ancestry genome-wide association meta-analysis of Parkinson's disease
    Kim, Jonggeol Jeffrey
    Vitale, Dan
    Otani, Diego Veliz
    Lian, Michelle Mulan
    Heilbron, Karl
    Aslibekyan, Stella
    Auton, Adam
    Babalola, Elizabeth
    Bell, Robert K.
    Bielenberg, Jessica
    Bryc, Katarzyna
    Bullis, Emily
    Cannon, Paul
    Coker, Daniella
    Partida, Gabriel Cuellar
    Dhamija, Devika
    Das, Sayantan
    Elson, Sarah L.
    Eriksson, Nicholas
    Filshtein, Teresa
    Fitch, Alison
    Fletez-Brant, Kipper
    Fontanillas, Pierre
    Freyman, Will
    Granka, Julie M.
    Hernandez, Alejandro
    Hicks, Barry
    Hinds, David A.
    Jewett, Ethan M.
    Jiang, Yunxuan
    Kukar, Katelyn
    Kwong, Alan
    Lin, Keng-Han
    Llamas, Bianca A.
    Lowe, Maya
    McCreight, Jey C.
    McIntyre, Matthew H.
    Micheletti, Steven J.
    Moreno, Meghan E.
    Nandakumar, Priyanka
    Nguyen, Dominique T.
    Noblin, Elizabeth S.
    O'Connell, Jared
    Petrakovitz, Aaron A.
    Poznik, G. David
    Reynoso, Alexandra
    Schloetter, Madeleine
    Schumacher, Morgan
    Shastri, Anjali J.
    Shelton, Janie F.
    NATURE GENETICS, 2024, 56 (01) : 27 - 36
  • [9] Multi-ancestry genome-wide association meta-analysis of Parkinson’s disease
    Jonggeol Jeffrey Kim
    Dan Vitale
    Diego Véliz Otani
    Michelle Mulan Lian
    Karl Heilbron
    Hirotaka Iwaki
    Julie Lake
    Caroline Warly Solsberg
    Hampton Leonard
    Mary B. Makarious
    Eng-King Tan
    Andrew B. Singleton
    Sara Bandres-Ciga
    Alastair J. Noyce
    Cornelis Blauwendraat
    Mike A. Nalls
    Jia Nee Foo
    Ignacio Mata
    Nature Genetics, 2024, 56 : 27 - 36
  • [10] Editorial comments on: "Multi-ancestry genome-wide association study of asthma exacerbations"
    Birben, Esra
    Kalayci, Omer
    Eigenmann, Philippe A.
    PEDIATRIC ALLERGY AND IMMUNOLOGY, 2022, 33 (07)