zMAP toolset: model-based analysis of large-scale proteomic data via a variance stabilizing z-transformation

被引:0
|
作者
Gui, Xiuqi [1 ]
Huang, Jing [1 ]
Ruan, Linjie [2 ]
Wu, Yanjun [3 ]
Guo, Xuan [1 ]
Cao, Ruifang [1 ]
Zhou, Shuhan [1 ]
Tan, Fengxiang [1 ]
Zhu, Hongwen [4 ]
Li, Mushan [5 ]
Zhang, Guoqing [1 ]
Zhou, Hu [4 ]
Zhan, Lixing [3 ]
Liu, Xin [2 ]
Tu, Shiqi [1 ]
Shao, Zhen [1 ]
机构
[1] Chinese Acad Sci, Univ Chinese Acad Sci, Shanghai Inst Nutr & Hlth, CAS Key Lab Computat Biol, Shanghai 200031, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Key Lab Epigenet Regulat & Intervent, Shanghai Inst Biochem Cell & Biol,CAS Ctr Excellen, Shanghai 200031, Peoples R China
[3] Chinese Acad Sci, Univ Chinese Acad Sci, Shanghai Inst Nutr & Hlth, CAS Key Lab Nutr Metab & Food Safety, Shanghai 200031, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Mat Med, Analyt Res Ctr Organ & Biol Mol, State Key Lab Drug Res, Shanghai 201203, Peoples R China
[5] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
来源
GENOME BIOLOGY | 2024年 / 25卷 / 01期
基金
中国国家自然科学基金;
关键词
INTEGRATED PROTEOGENOMIC CHARACTERIZATION; RELATIVE QUANTIFICATION; MOLECULAR SIGNATURES; RATIO COMPRESSION; METABOLISM; CANCER; ITRAQ; QUANTITATION; INSIGHTS; REVEALS;
D O I
10.1186/s13059-024-03382-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Isobaric labeling-based mass spectrometry (ILMS) has been widely used to quantify, on a proteome-wide scale, the relative protein abundance in different biological conditions. However, large-scale ILMS data sets typically involve multiple runs of mass spectrometry, bringing great computational difficulty to the integration of ILMS samples. We present zMAP, a toolset that makes ILMS intensities comparable across mass spectrometry runs by modeling the associated mean-variance dependence and accordingly applying a variance stabilizing z-transformation. The practical utility of zMAP is demonstrated in several case studies involving the dynamics of cell differentiation and the heterogeneity across cancer patients.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Model-based variance-stabilizing transformation for Illumina microarray data
    Lin, Simon M.
    Du, Pan
    Huber, Wolfgang
    Kibbe, Warren A.
    NUCLEIC ACIDS RESEARCH, 2008, 36 (02)
  • [2] Tag-Count Analysis of Large-Scale Proteomic Data
    Branson, Owen E.
    Freitas, Michael A.
    JOURNAL OF PROTEOME RESEARCH, 2016, 15 (12) : 4742 - 4746
  • [3] Genomic and proteomic databases: Large-scale analysis and integration of data
    Cavalcoli, JD
    TRENDS IN CARDIOVASCULAR MEDICINE, 2001, 11 (02) : 76 - 81
  • [4] Model-Based Interfacing of Large-Scale Metrology Instruments
    Montavon, Benjamin
    Peterek, Martin
    Schmitt, Robert H.
    MULTIMODAL SENSING: TECHNOLOGIES AND APPLICATIONS, 2019, 11059
  • [5] Model-based analysis of effects from large-scale wind power production
    Rosen, Johannes
    Tietze-Stoeckinger, Ingela
    Rentz, Otto
    ENERGY, 2007, 32 (04) : 575 - 583
  • [6] Model-based analysis of effects from large-scale wind power production
    Rosen, J
    Tietze-Stöckinger, I
    Rentz, O
    Proceedings of ECOS 2005, Vols 1-3: SHAPING OUR FUTURE ENERGY SYSTEMS, 2005, : 1585 - 1592
  • [7] A Large-Scale Technology Evaluation Study: Effects of Model-based Analysis and Testing
    Klaes, Michael
    Bauer, Thomas
    Dereani, Andreas
    Soderqvist, Thomas
    Helle, Philipp
    2015 IEEE/ACM 37TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, VOL 2, 2015, : 119 - 128
  • [8] Model-based fault localization in large-scale computing systems
    Maruyama, Naoya
    Matsuoka, Satoshi
    2008 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-8, 2008, : 1841 - 1852
  • [9] A MODEL-BASED AID FOR MONITORING AND CONTROLLING A LARGE-SCALE SYSTEM
    ZINSER, K
    HENNEMAN, RL
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (04): : 888 - 892
  • [10] Specificity of cysteine cathepsins through the eyes of large-scale proteomic data analysis
    Tusar, L.
    Impens, F.
    Van Quickelberghe, E.
    Vizovisek, M.
    Mihelic, M.
    Vidmar, R.
    Fonovic, M.
    Turk, B.
    Gevaert, K.
    Turk, D.
    FEBS OPEN BIO, 2021, 11 : 169 - 169