The weighted Davis-Wielandt Berezin number for reproducing kernel Hilbert space operators

被引:0
|
作者
Mahdiabadi, Nooshin Eslami [1 ]
Bakherad, Mojtaba [1 ]
Hajmohamadi, Monire [1 ]
Petrushka, Mykola [2 ]
机构
[1] Univ Sistan & Baluchestan, Fac Math, Dept Math, Zahedan, Iran
[2] Lviv Polytech Natl Univ, Lvov, Ukraine
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2025年 / 2025卷 / 01期
关键词
Weighted Berezin number; Berezin set; Berezin symbol; Davis-Wielandt Berezin; NUMERICAL RADIUS; INEQUALITIES;
D O I
10.1186/s13660-025-03255-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A functional Hilbert space is the Hilbert space of complex-valued functions on some set Theta subset of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Theta \subseteq \mathcal {C}$\end{document} that the evaluation functionals phi lambda(f)=f(lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varphi _{\lambda}\left ( f\right ) =f\left ( \lambda \right ) $\end{document}, lambda is an element of Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in \Theta $\end{document} are continuous on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}$\end{document}. Then, by the Riesz representation theorem, there is a unique element k lambda is an element of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k_{\lambda}\in \mathcal {H}$\end{document} such that f(lambda)=< f,k lambda >\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\left ( \lambda \right ) =\left \langle f,k_{\lambda}\right \rangle $\end{document} for all f is an element of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\in \mathcal {H}$\end{document} and every lambda is an element of Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in \Theta $\end{document}. The function k on Theta x Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Theta \times \Theta $\end{document} defined by k(z,lambda)=k lambda(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\left ( z,\lambda \right ) =k_{\lambda}\left ( z\right ) $\end{document} is called the reproducing kernel of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}$\end{document}. In this study, we defined the weighted Davis-Wielandt Berezin number, and then we obtained some related inequalities. It is shown, among other inequalities, that if X is an element of L(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X\in{\mathcal {L}}({\mathcal {H}})$\end{document} and nu is an element of[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu \in [0,1]$\end{document}, then 12(ber2(X nu+|X nu|2)+cber2(X nu-|X nu|2))<= dwber nu 2(X)<= 12(ber2(X nu+|X nu|2)+ber2(X nu-|X nu|2)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \frac{1}{2}\Big(\textbf{ber}<^>{2} (X_{\nu}+\vert X_{\nu}\vert <^>{2})&+c_{ \textbf{ber}}<^>{2}(X_{\nu}-\vert X_{\nu}\vert <^>{2})\Big) \\ &\leq dw_{\textbf{ber}_{\nu}}<^>{2}(X) \\ &\leq \frac{1}{2}\left (\textbf{ber}<^>{2} (X_{\nu}+\vert X_{\nu}\vert <^>{2})+ \textbf{ber}<^>{2}(X_{\nu}-\vert X_{\nu}\vert <^>{2})\right ), \end{aligned}$$ \end{document} where X nu=(1-2 nu)X & lowast;+X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_{\nu}= (1-2\nu )X<^>{*}+X$\end{document}. Some bounds for the weighted Davis-Wielandt Berezin number are also established.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] On a New Norm on the Space of Reproducing Kernel Hilbert Space Operators and Berezin Radius Inequalities
    Bhunia, P.
    Gurdal, M.
    Paul, K.
    Sen, A.
    Tapdigoglu, R.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (09) : 970 - 986
  • [22] Davis-Wielandt shells of normal operators
    Li, Chi-Kwong
    Poon, Yiu-Tung
    ACTA SCIENTIARUM MATHEMATICARUM, 2009, 75 (1-2): : 289 - 297
  • [23] A generalization of the Davis-Wielandt radius for operators
    Alomari, Mohammad W.
    Bakherad, Mojtaba
    Hajmohamadi, Monire
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [24] Some results for reproducing kernel Hilbert space operators via Berezin symbols
    Tapdigoglu, Ramiz
    Garayev, Mubariz
    FILOMAT, 2024, 38 (11) : 3929 - 3936
  • [25] On Some Problems for Reproducing Kernel Hilbert Space Operators via the Berezin Transform
    Karaev, M. T.
    Tapdigoglu, R.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [26] On Some Problems for Reproducing Kernel Hilbert Space Operators via the Berezin Transform
    M. T. Karaev
    R. Tapdigoglu
    Mediterranean Journal of Mathematics, 2022, 19
  • [27] New Inequalities for Davis–Wielandt Radius of Hilbert Space Operators
    Pintu Bhunia
    Aniket Bhanja
    Kallol Paul
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3523 - 3539
  • [28] Davis-Wielandt shells of semi-Hilbertian space operators and its applications
    Feki, Kais
    Mahmoud, Sid Ahmed Ould Ahmed
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (03) : 1281 - 1304
  • [29] ON GENERALIZED DAVIS-WIELANDT RADIUS INEQUALITIES OF SEMI-HILBERTIAN SPACE OPERATORS
    Bhanja, Aniket
    Bhunia, Pintu
    Paul, Kallol
    OPERATORS AND MATRICES, 2021, 15 (04): : 1201 - 1225
  • [30] Bounds for the Davis-Wielandt radius of bounded linear operators
    Bhunia, Pintu
    Bhanja, Aniket
    Bag, Santanu
    Paul, Kallol
    ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (01)