The weighted Davis-Wielandt Berezin number for reproducing kernel Hilbert space operators

被引:0
|
作者
Mahdiabadi, Nooshin Eslami [1 ]
Bakherad, Mojtaba [1 ]
Hajmohamadi, Monire [1 ]
Petrushka, Mykola [2 ]
机构
[1] Univ Sistan & Baluchestan, Fac Math, Dept Math, Zahedan, Iran
[2] Lviv Polytech Natl Univ, Lvov, Ukraine
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2025年 / 2025卷 / 01期
关键词
Weighted Berezin number; Berezin set; Berezin symbol; Davis-Wielandt Berezin; NUMERICAL RADIUS; INEQUALITIES;
D O I
10.1186/s13660-025-03255-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A functional Hilbert space is the Hilbert space of complex-valued functions on some set Theta subset of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Theta \subseteq \mathcal {C}$\end{document} that the evaluation functionals phi lambda(f)=f(lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varphi _{\lambda}\left ( f\right ) =f\left ( \lambda \right ) $\end{document}, lambda is an element of Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in \Theta $\end{document} are continuous on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}$\end{document}. Then, by the Riesz representation theorem, there is a unique element k lambda is an element of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k_{\lambda}\in \mathcal {H}$\end{document} such that f(lambda)=< f,k lambda >\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\left ( \lambda \right ) =\left \langle f,k_{\lambda}\right \rangle $\end{document} for all f is an element of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\in \mathcal {H}$\end{document} and every lambda is an element of Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in \Theta $\end{document}. The function k on Theta x Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Theta \times \Theta $\end{document} defined by k(z,lambda)=k lambda(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\left ( z,\lambda \right ) =k_{\lambda}\left ( z\right ) $\end{document} is called the reproducing kernel of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}$\end{document}. In this study, we defined the weighted Davis-Wielandt Berezin number, and then we obtained some related inequalities. It is shown, among other inequalities, that if X is an element of L(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X\in{\mathcal {L}}({\mathcal {H}})$\end{document} and nu is an element of[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu \in [0,1]$\end{document}, then 12(ber2(X nu+|X nu|2)+cber2(X nu-|X nu|2))<= dwber nu 2(X)<= 12(ber2(X nu+|X nu|2)+ber2(X nu-|X nu|2)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \frac{1}{2}\Big(\textbf{ber}<^>{2} (X_{\nu}+\vert X_{\nu}\vert <^>{2})&+c_{ \textbf{ber}}<^>{2}(X_{\nu}-\vert X_{\nu}\vert <^>{2})\Big) \\ &\leq dw_{\textbf{ber}_{\nu}}<^>{2}(X) \\ &\leq \frac{1}{2}\left (\textbf{ber}<^>{2} (X_{\nu}+\vert X_{\nu}\vert <^>{2})+ \textbf{ber}<^>{2}(X_{\nu}-\vert X_{\nu}\vert <^>{2})\right ), \end{aligned}$$ \end{document} where X nu=(1-2 nu)X & lowast;+X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_{\nu}= (1-2\nu )X<^>{*}+X$\end{document}. Some bounds for the weighted Davis-Wielandt Berezin number are also established.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] THE WEIGHTED AND THE DAVIS-WIELANDT BEREZIN NUMBER
    Garayev, M. U. B. A. R. I. Z.
    Bakherad, M. O. J. T. A. B. A.
    Tapdigoglu, R. A. M. I. Z.
    OPERATORS AND MATRICES, 2023, 17 (02): : 469 - 484
  • [2] NORM-PARALLELISM OF HILBERT SPACE OPERATORS AND THE DAVIS-WIELANDT BEREZIN NUMBER
    Alomari, Mohammad W.
    Hajmohamadi, Monire
    Bakherad, Mojtaba
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (01): : 231 - 258
  • [3] Davis–Wielandt–Berezin radius inequalities of reproducing kernel Hilbert space operators
    Anirban Sen
    Pintu Bhunia
    Kallol Paul
    Afrika Matematika, 2023, 34
  • [4] Davis-Wielandt-Berezin radius inequalities of reproducing kernel Hilbert space operators
    Sen, Anirban
    Bhunia, Pintu
    Paul, Kallol
    AFRIKA MATEMATIKA, 2023, 34 (03)
  • [5] On the Davis-Wielandt radius inequalities of Hilbert space Operators
    Alomari, M. W.
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (11): : 1804 - 1828
  • [6] Bounds for the Berezin number of reproducing kernel Hilbert space operators
    Sen, Anirban
    Bhunia, Pintu
    Paul, Kallol
    FILOMAT, 2023, 37 (06) : 1741 - 1749
  • [7] New Inequalities for Davis-Wielandt Radius of Hilbert Space Operators
    Bhunia, Pintu
    Bhanja, Aniket
    Paul, Kallol
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3523 - 3539
  • [8] On the Berezin Number of Operators on the Reproducing Kernel of Hilbert Space and Related Problems
    Yamanci, Ulas
    Karli, Ismail M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2024, 76 (04) : 680 - 690
  • [9] Some Upper Bounds for the Davis-Wielandt Radius of Hilbert Space Operators
    Zamani, Ali
    Shebrawi, Khalid
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (01)
  • [10] Inequalities for the Davis-Wielandt Radius of Operators in Hilbert C ∗-Modules Space
    Hassaouy, Mohammed
    Bounader, Nordine
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22