Uncovering gene and cellular signatures of immune checkpoint response via machine learning and single-cell RNA-seq

被引:0
|
作者
Pinhasi, Asaf [1 ]
Yizhak, Keren [1 ,2 ]
机构
[1] Technion Israel Inst Technol, Ruth & Bruce Rappaport Fac Med, Dept Cell Biol & Canc Sci, Haifa, Israel
[2] Technion Israel Inst Technol, Taub Fac Comp Sci, Haifa, Israel
基金
以色列科学基金会;
关键词
BLOCKADE; IMMUNOTHERAPY; ACTIVATION;
D O I
10.1038/s41698-025-00883-z
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Immune checkpoint inhibitors have transformed cancer therapy. However, only a fraction of patients benefit from these treatments. The variability in patient responses remains a significant challenge due to the intricate nature of the tumor microenvironment. Here, we harness single-cell RNA-sequencing data and employ machine learning to predict patient responses while preserving interpretability and single-cell resolution. Using a dataset of melanoma-infiltrated immune cells, we applied XGBoost, achieving an initial AUC score of 0.84, which improved to 0.89 following Boruta feature selection. This analysis revealed an 11-gene signature predictive across various cancer types. SHAP value analysis of these genes uncovered diverse gene-pair interactions with non-linear and context-dependent effects. Finally, we developed a reinforcement learning model to identify the most informative single cells for predictivity. This approach highlights the power of advanced computational methods to deepen our understanding of cancer immunity and enhance the prediction of treatment outcomes.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] SINGLE-CELL ANALYSIS From single-cell RNA-seq to transcriptional regulation
    La Manno, Gioele
    NATURE BIOTECHNOLOGY, 2019, 37 (12) : 1421 - 1422
  • [42] Decontamination of ambient RNA in single-cell RNA-seq with DecontX
    Shiyi Yang
    Sean E. Corbett
    Yusuke Koga
    Zhe Wang
    W Evan Johnson
    Masanao Yajima
    Joshua D. Campbell
    Genome Biology, 21
  • [43] Optimal Gene Filtering for Single-Cell data (OGFSC)-a gene filtering algorithm for single-cell RNA-seq data
    Hao, Jie
    Cao, Wei
    Huang, Jian
    Zou, Xin
    Han, Ze-Guang
    BIOINFORMATICS, 2019, 35 (15) : 2602 - 2609
  • [44] Decontamination of ambient RNA in single-cell RNA-seq with DecontX
    Yang, Shiyi
    Corbett, Sean E.
    Koga, Yusuke
    Wang, Zhe
    Johnson, W. Evan
    Yajima, Masanao
    Campbell, Joshua D.
    GENOME BIOLOGY, 2020, 21 (01)
  • [45] Interpretable factor models of single-cell RNA-seq via variational autoencoders
    Svensson, Valentine
    Gayoso, Adam
    Yosef, Nir
    Pachter, Lior
    BIOINFORMATICS, 2020, 36 (11) : 3418 - 3421
  • [46] Feature Selection in Single-Cell RNA-seq Data via a Genetic Algorithm
    Chatzilygeroudis, Konstantinos I.
    Vrahatis, Aristidis G.
    Tasoulis, Sotiris K.
    Vrahatis, Michael N.
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 15, 2021, 12931 : 66 - 79
  • [47] Single-cell RNA-seq: advances and future challenges
    Saliba, Antoine-Emmanuel
    Westermann, Alexander J.
    Gorski, Stanislaw A.
    Vogel, Joerg
    NUCLEIC ACIDS RESEARCH, 2014, 42 (14) : 8845 - 8860
  • [48] Guidelines for reporting single-cell RNA-seq experiments
    Fullgrabe, Anja
    George, Nancy
    Green, Matthew
    Nejad, Parisa
    Aronow, Bruce
    Fexova, Silvie Korena
    Fischer, Clay
    Freeberg, Mallory Ann
    Huerta, Laura
    Morrison, Norman
    Scheuermann, Richard H.
    Taylor, Deanne
    Vasilevsky, Nicole
    Clarke, Laura
    Gehlenborg, Nils
    Kent, Jim
    Marioni, John
    Teichmann, Sarah
    Brazma, Alvis
    Papatheodorou, Irene
    NATURE BIOTECHNOLOGY, 2020, 38 (12) : 1384 - 1386
  • [49] A SMARTer solution to stranded single-cell RNA-seq
    Gandlur, S.
    Pesant, M.
    Bolduc, N.
    Lee, S.
    Hardy, C.
    Das, A.
    Bostick, M.
    Farmer, A.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1716 - 1717
  • [50] Solo: Doublet Identification in Single-Cell RNA-Seq via Semi-Supervised Deep Learning
    Bernstein, Nicholas J.
    Fong, Nicole L.
    Lam, Irene
    Roy, Margaret A.
    Hendrickson, David G.
    Kelley, David R.
    CELL SYSTEMS, 2020, 11 (01) : 95 - +